版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………外…………○…………装…………○…………订…………○…………线…………○……○…………内…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………外…………○…………装…………○…………订…………○…………线…………○……○…………内…………○…………装…………○…………订…………○…………线…………○…………第=page44页,共=sectionpages11页第=page33页,共=sectionpages11页全等三角形专题培优考试总分:110分考试时间:120分钟卷I(选择题)一、选择题(共10小题,每小题2分,共20分)
1.如图为个边长相等的正方形的组合图形,则A.B.C.D.
2.下列定理中逆定理不存在的是()A.角平分线上的点到这个角的两边距离相等B.在一个三角形中,如果两边相等,那么它们所对的角也相等C.同位角相等,两直线平行D.全等三角形的对应角相等
3.已知:如图,,,,则不正确的结论是()A.与互为余角B.C.D.
4.如图,是的中位线,延长至使,连接,则的值为()A.B.C.D.
5.如图,在平面直角坐标系中,在轴、轴的正半轴上分别截取、,使;再分别以点、为圆心,以大于长为半径作弧,两弧交于点.若点的坐标为,则与的关系为()A.B.C.D.
6.如图,是等边三角形,,于点,于点,,则下列结论:①点在的角平分线上;
②;
③;
④.正确的有()A.个B.个C.个D.个
7.如图,直线、、″表示三条相互交叉的公路,现计划建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有()A.一处B.二处C.三处D.四处
8.如图,是的角平分线,则等于()A.B.C.D.
9.已知是的中线,且比的周长大,则与的差为()A.B.C.D.
10.若一个三角形的两条边与高重合,那么它的三个内角中()A.都是锐角B.有一个是直角C.有一个是钝角D.不能确定卷II(非选择题)二、填空题(共10小题,每小题2分,共20分)
11.问题情境:在中,,,点为边上一点(不与点,重合),交直线于点,连接,将线段绕点顺时针方向旋转得到线段(旋转角为),连接.
特例分析:如图.若,则图中与全等的一个三角形是________,的度数为________.类比探究:请从下列,两题中任选一题作答,我选择________题.
:如图,当时,求的度数;
:如图,当时,
①猜想的度数与的关系,用含的式子表示猜想的结果,并证明猜想;
②在图中将“点为边上的一点”改为“点在线段的延长线上”,其余条件不变,请直接写出的度数(用含的式子表示,不必证明)
12.如图,正方形纸片的边长为,点、分别在边、上,将、分别沿、折叠,点、恰好都落在点处,已知,则的长为________.
13.在中,为的平分线,于,于,面积是,,,则的长为________.
14.在中,,的垂直平分线与所在的直线相交所得到锐角为,则等于________.
15.如图,平分,于,于,,则图中有________对全等三角形.
16.如图,在中,,点从点出发沿射线方向,在射线上运动.在点运动的过程中,连结,并以为边在射线上方,作等边,连结.当________时,;请添加一个条件:________,使得为等边三角形;
①如图,当为等边三角形时,求证:;
②如图,当点运动到线段之外时,其它条件不变,①中结论还成立吗?请说明理由.
17.如图,从圆外一点引圆的两条切线,,切点分别为,.如果,,那么弦的长是________.
18.如图,在中,,,是的平分线,平分交于,则________.
19.阅读下面材料:
小聪遇到这样一个有关角平分线的问题:如图,在中,,平分,,
求的长.
小聪思考:因为平分,所以可在边上取点,使,连接.这样很容易得到,经过推理能使问题得到解决(如图).
请回答:是________三角形.的长为________.
参考小聪思考问题的方法,解决问题:
如图,已知中,,,平分,,.求的长.
20.如图,在和中,,,若要用“斜边直角边..”直接证明,则还需补充条件:________.三、解答题(共7小题,每小题10分,共70分)
∴."]\"go题库\"20.[“”]21.证明:∵为等边三角形,
∴,,
即,
∵平分,
∴,
在和中,
,
∴,
∴,,
又,
∴,
∴为等边三角形.22.解:如图所示:
;如图所示:即为所求;
;①如图所示:即为所求;
②如图所示:即为所求;
..23.解:如图,在平行四边形中,,
∴,
∵在中,为的中点,,
∴,
又∵,
∴,
故可设,,则
中,,
解得,
∴,
又∵,,
∴为的中点,
∴;如图,延长交的延长线于点,则,
∵,
∴,
又∵平分,
∴,
∴是等腰直角三角形,
∴,
又∵,
∴,
∴,,
又∵为的中点,
∴,
∴,
∴,
∵,
∴;若点在延长线上,为中点,且,则中的结论不成立,正确结论为:.
证明:如图,延长交的延长线于点,则,
∵,
∴,
∴,
又∵,
∴,
∴,,
又∵为的中点,
∴,
∴,
∴,
∵,
∴.24.解:∵直线与轴、轴分别交于、两点,
∴,,
∵直线与直线关于轴对称,
∴
∴直线的解析式为:;如图..
∵直线与直线关于轴对称,
∴,
∵与为象限平分线的平行线,
∴与为等腰直角三角形,
∴,
∵,
∴
∴
∴,,
∴;①对,
过点作轴于,直线与直线关于轴对称
∵,,
又∵,
∴,
则,
∴
∴
∴
∴
∴.25.证明:
连接,
∵,
∴,
∵,
∴,
∴,
∵,,
∴,
在和中
,
∴.26.证明:∵,
∴,
即.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年简历分析与视频面试AI评估的效能提升方法
- 人教版英语八年级上册教学课件Unit 8 Let's Communicate!Section B
- 2026 年中职康复治疗(康复治疗基础)试题及答案
- 初级会计资产题库及答案
- 2024年中考道德与法治(广西)第二次模拟考试(含答案)
- 2025年海南省公需课学习-体育强国建设纲要解读437
- 中药注射剂生产检验电子化记录技术指南
- 2025年营养周饮食健康知识竞赛题库及答案(共120题)
- 2025年高二选修政治试卷及答案
- 盐城三模历史试卷及答案
- DB21∕T 3165-2025 钢纤维混凝土预制管片技术规程
- 广西崇左市江州区2025-2026学年七年级上学期第三阶段素质评价历史试题 (含答案)
- 2025ACR指南:系统性红斑狼疮的治疗课件
- 国开2025年秋《数学思想与方法》大作业答案
- 消防安全培训课件
- 2025及未来5年印染布料项目投资价值分析报告
- (2025年)医学装备管理试题(带答案)
- 车间后备人才现状汇报
- 2025四川产业振兴基金投资集团有限公司应届毕业生招聘9人笔试历年难易错考点试卷带答案解析2套试卷
- 《建筑设计》课程教案(2025-2026学年)
- 软装工程质量管理方案有哪些
评论
0/150
提交评论