




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年陕西省榆林市普通高校对口单招数学自考预测试题(含答案)
一、单选题(10题)1.从1,2,3,4这4个数中任取两个数,则取出的两数之和是奇数的概率是()A.1/5B.1/5C.2/5D.2/3
2.下列结论中,正确的是A.{0}是空集
B.C.D.
3.直线L过(-1,2)且与直线2x-3y+5=0垂直,则L的方程是()A.3x+2y-1=0B.3x+2y+7=0C.2x-3y+6=0D.2x-3y+8=0
4.A.B.C.
5.某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名.现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为()A.6B.8C.10D.12
6.过点A(-1,0),B(0,-1)直线方程为()A.x+y-1=0B.x-y-1=0C.x+y+l=0D.x-y+l=0
7.函数y=log2x的图象大致是()A.
B.
C.
D.
8.A.b>a>0B.b<a<0C.a>b>0D.a<b<0
9.(x+2)6的展开式中x4的系数是()A.20B.40C.60D.80
10.A.(0,4)
B.C.(-2,2)
D.
二、填空题(10题)11.
12.
13.函数f(x)=sin(x+φ)-2sinφcosx的最大值为_____.
14.等比数列中,a2=3,a6=6,则a4=_____.
15.
16.
17.不等式(x-4)(x+5)>0的解集是
。
18.
19.
20.若lgx=-1,则x=______.
三、计算题(5题)21.从含有2件次品的7件产品中,任取2件产品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2
.
22.有语文书3本,数学书4本,英语书5本,书都各不相同,要把这些书随机排在书架上.(1)求三种书各自都必须排在一起的排法有多少种?(2)求英语书不挨着排的概率P。
23.有四个数,前三个数成等差数列,公差为10,后三个数成等比数列,公比为3,求这四个数.
24.己知{an}为等差数列,其前n项和为Sn,若a3=6,S3=12,求公差d.
25.已知函数y=cos2x+3sin2x,x∈R求:(1)函数的值域;(2)函数的最小正周期。
四、简答题(10题)26.已知等差数列的前n项和是求:(1)通项公式(2)a1+a3+a5+…+a25的值
27.三个数a,b,c成等差数列,公差为3,又a,b+1,c+6成等比数列,求a,b,c。
28.已知抛物线的焦点到准线L的距离为2。(1)求拋物线的方程及焦点下的坐标。(2)过点P(4,0)的直线交拋物线AB两点,求的值。
29.在拋物线y2=12x上有一弦(两端点在拋物线上的线段)被点M(1,2)平分.(1)求这条弦所在的直线方程;(2)求这条弦的长度.
30.据调查,某类产品一个月被投诉的次数为0,1,2的概率分别是0.4,0.5,0.1,求该产品一个月内被投诉不超过1次的概率
31.已知函数,且.(1)求a的值;(2)求f(x)函数的定义域及值域.
32.数列的前n项和Sn,且求(1)a2,a3,a4的值及数列的通项公式(2)a2+a4+a6++a2n的值
33.化简
34.如图四面体ABCD中,AB丄平面BCD,BD丄CD.求证:(1)平面ABD丄平面ACD;(2)若AB=BC=2BD,求二面角B-AC-D的正弦值.
35.证明:函数是奇函数
五、解答题(10题)36.
37.证明上是增函数
38.李经理按照市场价格10元/千克在本市收购了2000千克香菇存放人冷库中.据预测,香菇的市场价格每天每千克将上涨0.5元,但冷库存放这批香菇时每天需要支出费用合计340元,而且香菇在冷库中最多保存110天,同时,平均每天有6千克的香菇损坏不能出售.(1)若存放x天后,将这批香菇一次性出售,设这批香菇的销售总金额为y元,试写出y与x之间的函数关系式;(2)李经理如果想获得利润22500元,需将这批香菇存放多少天后出售?(提示:利润=销售总金额一收购成本一各种费用)(3)李经理将这批香菇存放多少天后出售可获得最大利润?最大利润是多少?
39.
40.
41.
42.
43.如图,在四棱锥P-ABCD中,PC丄平面ABCD,AB//DC,DC丄AC.(1)求证:DC丄平面PAC;(2)求证:平面PAB丄平面PAC.
44.如图,在正方体ABCD-A1B1C1D1中,E,F分别为DD1,CC1的中点.求证:(1)AC⊥BD1;(2)AE//平面BFD1.
45.如图,AB是⊙O的直径,P是⊙O所在平面外一点,PA垂直于⊙O所在的平面,且PA=AB=10,设点C为⊙O上异于A,B的任意一点.(1)求证:BC⊥平面PAC;(2)若AC=6,求三棱锥C-PAB的体积.
六、单选题(0题)46.A.
B.
C.
参考答案
1.D古典概型的概率.任意取到两个数的方法有6种:1,2;1,3;1,4;2,3;2,4;3,4;,满足题意的有4种:1,2;1,4;2,3;3,4;,则所求的概率为4/6=2/3
2.B
3.A由于直线与2x-3y+5=0垂直,因此可以设直线方程为3x+2y+k=0,又直线L过点(-1,2),代入直线方程得3*(-1)+2*2+k=0,因此k=-1,所以直线方程为3x+2y-1=0。
4.A
5.B分层抽样方法.试题分析:根据题意,由分层抽样知识可得:在高二年级的学生中应抽取的人数为:40×6/30=8
6.C直线的两点式方程.点代入验证方程.
7.C对数函数的图象和基本性质.
8.D
9.C由二项式定理展开可得,
10.A
11.外心
12.
13.1.三角函数最值.因f(x)=sinxcosφ+cosxsinφ-2sinφcosx=sinxcosφ-cosxsinφ=sin(x-φ)≤1,故函数f(x)==sin(x+φ)-2sinφcosx的最大值为1.
14.
,由等比数列性质可得a2/a4=a4/a6,a42=a2a6=18,所以a4=.
15.a<c<b
16.-6
17.{x|x>4或x<-5}方程的根为x=4或x=-5,所以不等式的解集为{x|x>4或x<-5}。
18.π/2
19.
20.1/10对数的运算.x=10-1=1/10
21.
22.
23.
24.
25.
26.
27.由已知得:由上可解得
28.(1)拋物线焦点F(,0),准线L:x=-,∴焦点到准线的距离p=2∴抛物线的方程为y2=4x,焦点为F(1,0)(2)直线AB与x轴不平行,故可设它的方程为x=my+4,得y2-4m-16=0由设A(x1,x2),B(y1,y2),则y1y2=-16∴
29.∵(1)这条弦与抛物线两交点
∴
30.设事件A表示“一个月内被投诉的次数为0”,事件B表示“一个月内被投诉的次数为1”∴P(A+B)=P(A)+P(B)=0.4+0.5=0.9
31.(1)(2)
32.
33.
34.
35.证明:∵∴则,此函数为奇函数
36.
37.证明:任取且x1<x2∴即∴在是增函数
38.(1)由题意,y与x之间的函数关系式为y=(10+0.5x)(2000-6x)=-3x2+940x+20000(l≤x≤110).(2)由题(-3x2+940x+20000)-(10×2000+340x)=22500;化简得,x2-200x+7500=0;解得x1=50,x2=150(不合题意,舍去);因此,李经理想获得利润22500,元,需将这批香菇存放50天后出售.(3)设利润为w,则由(2)得,w=(―3x2+940x+20000)-(10×2000+340x)=-32+600x=-3(x-100)2;因此,当x=100时,wmax=30000;又因为100∈(0,110),所以李经理将这批香菇存放100天后出售可获得最大利润为30000元.
39.
40.
41.
42.
43.(1)∵PC丄平面ABCD,DC包含于平面ABCD,∴PC丄DC.又AC丄DC,PC∩AC=C,PC包含于平面PAC,AC包含于平面PAC,∴CD丄平面PAC.(2)证明∵AB//CD,CD丄平面PAC,∴AB丄平面PAC,AB包含于平面PAB,∴平面PAB丄平面PAC.
44.(1)连接BD,由D1D⊥平面ABCD→D1D⊥AC又BD⊥AC,BD∩D1D=D,BD1,BD平面BDD1→AC⊥平面BDD1,又因为BD1包含于平面BDD1→AC⊥BD1.(2)连接EF,因为E,F分别为DD1,CC1的中点,所以EF//DC,且EF=DC,又DC//AB,且EF=AB所以四边形EFBA是平行四边形,所以AE//BF,又因为AE不包含平面BFD1,BF包含于平面BFD1,所以AE//平面BFD1
45.(1)∵PA垂直
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安全责任活动承诺书4篇
- 市场营销策略制定指南市场调研整合版
- 高级团课考试题型及答案
- 2025年病案室病案编码规范性考核试题及答案解析
- 2025年英语高考宁波试卷及答案
- 生产设备操作规程维护和维修指引书
- 雨后的彩虹写景并抒情作文12篇
- 职业技能培训个人守秘责任书(9篇)
- 2025年保育知识试题以及答案
- 企业人力资源管理基础模板
- 全市网格员业务知识培训课件
- 湖南省衡阳市衡山县2025-2026学年六年级上学期9月月考数学试题(无答案)
- 2025原发性骨质疏松症诊疗指南
- 防范青少年滥用涉麻精药品
- 2.3二次根式(第2课时)(教学课件)数学北师大版2024八年级上册
- 2025年辅警考试公安基础知识考试真题(含答案)
- ecpl安全培训课件
- 九年级上学案第13课《湖心亭看雪》学案答案
- 2025年建筑工程师高级职称考试试题集
- 中医医学骨科诊疗体系与实践
- 医院后勤文化建设体系构建
评论
0/150
提交评论