版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某产品生产厂家的市场部在对4家商场进行调研时,获得该产品售价单位:元和销售量单位:件之间的四组数据如表:售价x46销售量y1211109为决策产品的市场指导价,用最小二乘法求得销售量y与售价x之间的线性回归方程,那么方程中的a值为A.17 B. C.18 D.2.一口袋里有大小形状完全相同的10个小球,其中红球与白球各2个,黑球与黄球各3个,从中随机取3次,每次取3个小球,且每次取完后就放回,则这3次取球中,恰有2次所取的3个小球颜色各不相同的概率为()A. B. C. D.3.“纹样”是中国艺术宝库的瑰宝,“火纹”是常见的一种传统纹样.为了测算某火纹纹样(如图阴影部分所示)的面积,作一个边长为5的正方形将其包含在内,并向该正方形内随机投掷1000个点,己知恰有400个点落在阴影部分,据此可估计阴影部分的面积是A.2 B.3 C.10 D.154.设,若,则数列是()A.递增数列 B.递减数列C.奇数项递增,偶数项递减的数列 D.偶数项递增,奇数项递减的数列5.若函数有小于零的极值点,则实数的取值范围是()A. B. C. D.6.函数的大致图象是()A. B.C. D.7.下列三句话按三段论的模式排列顺序正确的是()①2018能被2整除;②一切偶数都能被2整除;③2018是偶数;A.①②③B.②①③C.②③①D.③②①8.用反证法证明“”时,应假设()A. B.C. D.9.利用独立性检验的方法调查大学生的性别与爱好某项运动是否有关,通过随机询问111名不同的大学生是否爱好某项运动,利用列联表,由计算可得P(K2>k)
1.11
1.14
1.124
1.111
1.114
1.111
k
2.615
3.841
4.124
5.534
6.869
11.828
参照附表,得到的正确结论是()A.有8.4%以上的把握认为“爱好该项运动与性别无关”B.有8.4%以上的把握认为“爱好该项运动与性别有关”C.在犯错误的概率不超过1.14%的前提下,认为“爱好该项运动与性别有关”D.在犯错误的概率不超过1.14%的前提下,认为“爱好该项运动与性别无关”10.已知函数,,若,则()A. B. C. D.11.已知是定义域为的奇函数,满足.若,则()A.50 B.2 C.0 D.-201812.展开式中第5项的二项式系数为()A.56 B.70 C.1120 D.-1120二、填空题:本题共4小题,每小题5分,共20分。13.已知“”是“”的充分不必要条件,且,则的最小值是_____.14.以椭圆的顶点为焦点,焦点为顶点的双曲线方程的标准方程是_______.15.已知直线的一个法向量,则直线的倾斜角是_________(结果用反三角函数表示);16.函数在其极值点处的切线方程为____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆C:的离心率为,且过点(1)求椭圆C的方程;(2)设直线:交椭圆C于A、B两点,0为坐标原点,求△OAB面积的最大值.18.(12分)设不等式表示的平面区别为.区域内的动点到直线和直线的距离之积为1.记点的轨迹为曲线.过点的直线与曲线交于、两点.(1)求曲线的方程;(1)若垂直于轴,为曲线上一点,求的取值范围;(3)若以线段为直径的圆与轴相切,求直线的斜率.19.(12分)从5名男生和4名女生中选出4人去参加座谈会,问:(1)如果4人中男生和女生各选2人,有多少种选法?(2)如果男生中的甲与女生中的乙至少要有1人在内,有多少种选法?(3)如果4人中必须既有男生又有女生,有多少种选法?20.(12分)已知函数的最大值为4.(1)求实数的值;(2)若,求的最小值.21.(12分)甲乙两个学校高三年级分别有1100人,1000人,为了了解两个学校全体高三年级学生在该地区一模考试的数学成绩情况,采用分层抽样方法从两个学校一共抽取了105名学生的数学成绩,并作出了频数分布统计表如下:(1)计算,的值;(2)若规定考试成绩在为优秀,请根据样本估计乙校数学成绩的优秀率;(3)若规定考试成绩在内为优秀,由以上统计数据填写下面列联表,若按是否优秀来判断,是否有的把握认为两个学校的数学成绩有差异.附:,.22.(10分)某车间名工人年龄数据如表所示:(1)求这名工人年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这名工人年龄的茎叶图;(3)求这名工人年龄的方差.年龄(岁)工人数(人)合计
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
求出样本中心点,代入线性回归方程,即可求出a的值.【详解】由题意,,,线性回归方程,,.故选:B.【点睛】本题考查回归分析,考查线性回归直线过样本中心点,在一组具有相关关系的变量的数据间,这样的直线可以画出许多条,而其中的一条能最好地反映x与Y之间的关系,这条直线过样本中心点.2、C【解析】每次所取的3个小球颜色各不相同的概率为:,∴这3次取球中,恰有2次所取的3个小球颜色各不相同的概率为:.本题选择C选项.3、C【解析】
根据古典概型概率公式以及几何概型概率公式分别计算概率,解方程可得结果.【详解】设阴影部分的面积是s,由题意得4001000=【点睛】(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解.(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域.4、C【解析】
根据题意,由三角函数的性质分析可得,进而可得函数为减函数,结合函数与数列的关系分析可得答案。【详解】根据题意,,则,指数函数为减函数即即即即,数列是奇数项递增,偶数项递减的数列,故选:C.【点睛】本题涉及数列的函数特性,利用函数单调性,通过函数的大小,反推变量的大小,是一道中档题目。5、A【解析】分析:函数有小于零的极值点转化为有负根,通过讨论此方程根为负根,求得实数的取值范围.详解:设,则,函数在上有小于零的极值点,有负根,①当时,由,无实数根,函数无极值点,不合题意,②当时,由,解得,当时,;当时,,为函数的极值点,,解得,实数的取值范围是,故选A.点睛:本题考查了利用导数研究函数的极值,属于中档题.求函数极值的步骤:(1)确定函数的定义域;(2)求导数;(3)解方程求出函数定义域内的所有根;(4)列表检查在的根左右两侧值的符号,如果左正右负(左增右减),那么在处取极大值,如果左负右正(左减右增),那么在处取极小值.6、D【解析】
利用函数的奇偶性排除选项,利用特殊值定义点的位置判断选项即可.【详解】函数是偶函数,排除选项B,当x=2时,f(2)=<0,对应点在第四象限,排除A,C;故选D.【点睛】本题考查函数的图象的判断,考查数形结合以及计算能力.7、C【解析】分析:根据三段论的一般模式进行排序即可.详解:由题意知,“一切偶数都能被2整除”是大前提,“2018是偶数”是小前提,“2018能被2整除”是结论.故这三句话按三段论的模式排列顺序为②③①.故选C.点睛:“三段论”是演绎推理的一般模式,包括:①大前提——已知的一般原理;②小前提——所研究的特殊情况;③结论——根据一般原理对特殊情况做出的判断.8、A【解析】
根据反证法的步骤,假设是对原命题结论的否定,即可得出正确选项.【详解】根据反证法的步骤,假设是对原命题的否定,P(x0)成立的否定是使得P(x0)不成立,即用反证法证明“∀x∈R,2x>0”,应假设为∃x0∈R,0故选:A.【点睛】本题考查反证法的概念,全称命题的否定,注意“改量词否结论”9、B【解析】解:计算K2≈8.815>6.869,对照表中数据得出有1.114的几率说明这两个变量之间的关系是不可信的,即有1−1.114=8.4%的把握说明两个变量之间有关系,本题选择B选项.10、A【解析】分析:先求出g(1)=a﹣1,再代入f[g(1)]=1,得到|a﹣1|=0,问题得以解决.详解:∵f(x)=5|x|,g(x)=ax2﹣x(a∈R),f[g(1)]=1,∴g(1)=a﹣1,∴f[g(1)]=f(a﹣1)=5|a﹣1|=1=50,∴|a﹣1|=0,∴a=1,故答案为:A.点睛:本题主要考查了指数的性质,和函数值的求出,属于基础题.11、B【解析】
由题意可得,为周期为4的函数,分别求得一个周期内的函数值,计算可得所求和.【详解】解:是定义域为的奇函数,可得,即有,即,进而得到,为周期为4的函数,若,可得,,,则,可得.故选:B.【点睛】本题考查抽象函数的函数值的求和,注意运用函数的周期性,考查转化思想和运算能力,属于中档题.12、B【解析】分析:直接利用二项展开式的通项公式求解即可.详解:展开式的通项公式为则展开式中第5项的二项式系数为点睛:本题考查二项展开式的通项公式,属基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
先求解指数不等式,再运用充分不必要条件求解范围.【详解】,则由题意得,所以能取的最小整数是.【点睛】本题考查指数不等式和充分不必要条件,属于基础题.14、【解析】分析:由椭圆的焦点为,顶点为,可得双曲线的焦点与顶点,从而可得双曲线方程.详解:椭圆的焦点为,顶点为,双曲线的顶点与焦点分别为,可得,所以双曲线方程是,故答案为.点睛:本题考查椭圆与双曲线的简单性质应用,意在考查综合应用所学知识解决问题的能力,解题时要认真注意审题,特别注意考虑双曲线的焦点位置.15、【解析】
由法向量与方向向量垂直,求出方向向量,得直线的斜率,从而得倾斜角。【详解】直线的一个法向量,则直线的一个方向向量为,其斜率为,∴倾斜角为。故答案为:。【点睛】本题考查求直线的倾斜角,由方向向量与法向量的垂直关系可求得直线斜率,从而求得倾斜角,注意倾斜角范围是,而反正切函数值域是。16、【解析】,令,此时函数在其极值点处的切线方程为考点::导数的几何意义.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】分析:(1)由离心率和过点建立等式方程组求解即可;(2)根据弦长公式可求得AB的长作为三角形的底边,然后由点到直线的距离求得高即可表示三角形的面积表达式,然后根据基本不等式求解最值即可.详解:(1)由已知可得,且,解得,,∴椭圆的方程为.(2)设,,将代入方程整理得,,∴,∴,,,,,,当且仅当时取等号,∴面积的最大值为.点睛:考查椭圆的标准方程,直线与椭圆的位置关系,弦长,点到直线的距离的应用,对常用公式的熟悉是解题关键,属于中档题.18、(1);(1);(3)【解析】
(1)根据“区域内的动点到直线和直线的距离之积为”列方程,化简后求得曲线的方程.(1)求得两点的坐标,利用平面向量数量积的坐标运算化简,由此求得的取值范围.(3)设出直线的方程,联立直线的方程和曲线,写出韦达定理.求得以为直径的圆的圆心和直径,根据圆与轴相切列方程,解方程求得直线的斜率.【详解】(1)设,依题意①,因为满足不等式,所以①可化为.(1)将代入曲线的方程,解得.取,设,因为为曲线上一点,故.则.即的取值范围是.(3)设直线的方程是,.联立,消去得,所以.设线段的中点为,则,所以..因为以线段为直径的圆与轴相切,所以,即,化简得.所以直线的斜率为.【点睛】本小题主要考查双曲线标准方程及其性质,考查一元二次方程根与系数关系,考查中点坐标公式、点到直线距离公式,考查运算求解能力,属于难题.19、(1)30;(2)91种;(3)120种.【解析】
试题分析:(1)根据题意,分别计算“从5名男生中选出2人”和“从4名女生中选出2人”的选法数目,由分步计数原理计算可得答案;
(2)用间接法分析:先计算在9人中任选4人的选法数目,再排除其中“甲乙都没有入选”的选法数目,即可得答案;
(3)用间接法分析:先计算在9人中任选4人的选法数目,再排除其中“只有男生”和“只有女生”的选法数目,即可得答案.试题解析:(1);(2)方法1:(间接法)在9人选4人的选法中,把男甲和女乙都不在内的去掉,就得到符合条件的选法数为:(种);方法2:(直接法)甲在内乙不在内有种,乙在内甲不在内有种,甲、乙都在内有种,所以男生中的甲与女生中的乙至少有1人在内的选法共有:(种).(3)方法1:(间接法)在9人选4人的选法中,把只有男生和只有女生的情况排除掉,得到选法总数为:(种);方法2:(直接法)分别按含男1,2,3人分类,得到符合条件的选法总数为:(种).点睛:(1)解排列组合问题要遵循两个原则:①按元素(或位置)的性质进行分类;②按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).(2)不同元素的分配问题,往往是先分组再分配.在分组时,通常有三种类型:①不均匀分组;②均匀分组;③部分均匀分组.注意各种分组类型中,不同分组方法的求解.20、(1);(2).【解析】【试题分析】(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年铯资源(全球垄断)项目评估报告
- 2026年茂名职业技术学院单招职业技能笔试模拟试题带答案解析
- 【产业研究报告】中国肺功能仪行业发展环境、市场运行格局及发展趋势预测
- 2026年能源物联网(Energy IoT)项目公司成立分析报告
- 2026年厦门华天涉外职业技术学院单招职业技能考试模拟试题附答案详解
- 2026年机械行业热处理节能改造项目可行性研究报告
- 2026年情绪主题社群运营项目评估报告
- 2026年黄河交通学院高职单招职业适应性考试参考题库带答案解析
- 2026年廊坊卫生职业学院高职单招职业适应性测试备考题库带答案解析
- 2026年天津理工大学中环信息学院高职单招职业适应性考试参考题库带答案解析
- 23秋国家开放大学《汉语基础》期末大作业(课程论文)参考答案
- 电弧炉炼钢工安全操作规程
- 人教版小学数学六年级年级下册课本习题集(带有课本插图)
- 南京财经大学国际经济学期末复习资料
- 辽宁省本溪市2023-2024学年七年级上学期期末数学试题
- 边缘计算网络架构
- “一带一路”视角下民航客舱服务跨文化素养的研究-以海南航空公司为例 工商管理专业
- 检查井工程量计算模板(原)
- 医学生物化学学习指导与习题集
- 保育员考试:中级保育员题库
- GB 14746-2006儿童自行车安全要求
评论
0/150
提交评论