




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,则不等式的解集为()A. B. C. D.2.抛物线的焦点坐标是()A. B. C. D.3.在复平面内复数z对应的点在第四象限,对应向量的模为3,且实部为,则复数等于()A. B. C. D.4.已知函数.若不等式的解集中整数的个数为3,则的取值范围是(
)A. B. C. D.5.复数,则的共轭复数在复平面内对应点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.曲线在点处的切线斜率为()A. B. C. D.7.将函数图象上所有点的横坐标缩短到原来的倍(纵坐标不变),再将所得图象上所有的点向左平移个单位长度,则所得图象对应的函数解析式为()A. B.C. D.8.已知函数在有极大值点,则的取值范围为()A. B. C. D.9.给出下列四个说法:①命题“都有”的否定是“使得”;②已知,命题“若,则”的逆命题是真命题;③是的必要不充分条件;④若为函数的零点,则,其中正确的个数为()A. B. C. D.10.设函数f(x),g(x)在[A,B]上均可导,且f′(x)<g′(x),则当A<x<B时,有()A.f(x)>g(x)B.f(x)+g(A)<g(x)+f(A)C.f(x)<g(x)D.f(x)+g(B)<g(x)+f(B)11.已知命题,,命题q:若恒成立,则,那么()A.“”是假命题 B.“”是真命题C.“”为真命题 D.“”为真命题12.二项式展开式中的第二项系数是8,则它的第三项的二项式系数为()A.24 B.18 C.6 D.16二、填空题:本题共4小题,每小题5分,共20分。13.展开式中的常数项是____________(用数字作答)14.已知非零向量,,满足:,且不等式恒成立,则实数的最大值为__________.15.若与的夹角为,,,则________.16.在极坐标系中,直线的方程为,则点到直线的距离为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)随着西部大开发的深入,西南地区的大学越来越受到广大考生的青睐,下表是西南地区某大学近五年的录取平均分与省一本线对比表:年份20142015201620172018年份代码12345省一本线505500525500530录取平均分533534566547580录取平均分与省一本线分差y2834414750(1)根据上表数据可知,y与t之间存在线性相关关系,求y关于t的线性回归方程;(2)据以往数据可知,该大学每年的录取分数X服从正态分布,其中为当年该大学的录取平均分,假设2019年该省一本线为520分,李华2019年高考考了569分,他很喜欢这所大学,想第一志愿填报,请利用概率与统计知识,给李华一个合理的建议.(第一志愿录取可能性低于,则建议谨慎报考)参考公式:,.参考数据:,.18.(12分)如图,在边长为的正方形中,点是的中点,点是的中点,点是上的点,且.将△AED,△DCF分别沿,折起,使,两点重合于,连接,.(Ⅰ)求证:;(Ⅱ)试判断与平面的位置关系,并给出证明.19.(12分)已知命题方程表示双曲线,命题点在圆的内部.若为假命题,也为假命题,求的取值范围.20.(12分)在中,角的对边分别为,且.(1)求角的大小;(2)若函数图象的一条对称轴方程为且,求的值.21.(12分)乒乓球单打比赛在甲、乙两名运动员间进行,比赛采用7局4胜制(即先胜4局者获胜,比赛结束),假设两人在每一局比赛中获胜的可能性相同.(1)求乙以4比1获胜的概率;(2)求甲获胜且比赛局数多于5局的概率.22.(10分)环境监测中心监测我市空气质量,每天都要记录空气质量指数(指数采取10分制,保留一位小数),现随机抽取20天的指数(见下表),将指数不低于视为当天空气质量优良.天数12345678910空气质量指数天数11121314151617181920空气质量指数(1)求从这20天随机抽取3天,至少有2天空气质量为优良的概率;(2)以这20天的数据估计我市总体空气质量(天数很多),若从我市总体空气质量指数中随机抽取3天的指数,用表示抽到空气质量为优良的天数,求的分布列及数学期望.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
利用导数判断出在上递增,而,由此将不等式转化为,然后利用单调性列不等式,解不等式求得的取值范围.【详解】由,故函数在上单调递增,又由,故不等式可化为,,得,解得.故选A.【点睛】本小题主要考查利用导数研究函数的单调性,考查对数不等式的解法,属于基础题.2、A【解析】分析:先把抛物线的方程化成标准方程,再求其焦点坐标.详解:由题得,所以抛物线的焦点坐标为.故答案为A.点睛:(1)本题主要考查抛物线的简单几何性质,意在考查学生对这些知识的掌握水平.(2)研究圆锥曲线时,首先一般把曲线的方程化成标准方程再研究.3、C【解析】
设复数,根据向量的模为3列方程求解即可.【详解】根据题意,复平面内复数z对应的点在第四象限,对应向量的模为3,且实部为.设复数,∵,∴,复数.故.故选:C.【点睛】本题考查复数的代数表示及模的运算,是基础题.4、D【解析】
将问题变为,即有个整数解的问题;利用导数研究的单调性,从而可得图象;利用恒过点画出图象,找到有个整数解的情况,得到不等式组,解不等式组求得结果.【详解】由得:,即:令,当时,;当时,在上单调递减;在上单调递增,且,由此可得图象如下图所示:由可知恒过定点不等式的解集中整数个数为个,则由图象可知:,即,解得:本题正确选项:【点睛】本题考查根据整数解的个数求解参数取值范围的问题,关键是能够将问题转化为曲线和直线的位置关系问题,通过数形结合的方式确定不等关系.5、A【解析】
化简,写出共轭复数即可根据复平面的定义选出答案.【详解】,在复平面内对应点为故选A【点睛】本题考查复数,属于基础题.6、C【解析】分析:先求函数的导数,因为函数图象在点处的切线的斜率为函数在处的导数,就可求出切线的斜率.详解:∴函数图象在点处的切线的斜率为1.
故选:C.点睛:本题考查了导数的运算及导数的几何意义,以及直线的倾斜角与斜率的关系,属基础题.7、D【解析】
由正弦函数的周期变换以及平移变换即可得出正确答案.【详解】函数图象上所有点的横坐标缩短到原来的倍(纵坐标不变)得到,再将所得图象上所有的点向左平移个单位长度,得到故选:D【点睛】本题主要考查了正弦函数的周期变换以及平移变换,属于中档题.8、C【解析】分析:令,得,,整理得,问题转化为求函数在山过的值域问题,令,则即可.详解:令,得,,整理得,令,则,则令,则在单调递减,∴,∴,经检验,满足题意.故选C.点睛:本题主要考查导数的综合应用极值和导数的关系,要求熟练掌握利用导数研究函数的单调性、极值与最值、把问题等价转化等是解题的关键.综合性较强,难度较大.9、C【解析】
对于①②③④分别依次判断真假可得答案.【详解】对于①,命题“都有”的否定是“使得”,故①错误;对于②,命题“若,则”的逆命题为“若,则”正确;对于③,若则,若则或,因此是的充分不必要条件,故③错误;对于④,若为函数,则,即,可令,则,故为增函数,令,显然为减函数,所以方程至多一解,又因为时,所以,则④正确,故选C.【点睛】本题主要考查真假命题的判断,难度中等.10、B【解析】试题分析:设F(x)=f(x)-g(x),∵在[A,B]上f'(x)<g'(x),F′(x)=f′(x)-g′(x)<0,∴F(x)在给定的区间[A,B]上是减函数.∴当x>A时,F(x)<F(A),即f(x)-g(x)<f(A)-g(A)即f(x)+g(A)<g(x)+f(A)考点:利用导数研究函数的单调性11、D【解析】
分别判断命题的真假性,然后再判断每个选项的真假【详解】,即不存在,命题是假命题若恒成立,⑴时,,即符合条件⑵时,则解得,则命题为真命题故是真命题故选【点睛】本题考查了含有“或”“且”“非”命题的真假判定,只需将命题的真假进行判定出来即可,需要解答一元二次不等式,属于基础题.12、C【解析】由题意可得:,∴,解得.它的第三项的二项式系数为.故选:C.点睛:求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第r+1项,再由特定项的特点求出r值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第r+1项,由特定项得出r值,最后求出其参数.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
将二项式变形为,得出其展开式通项为,再利用,求出,不存在,再将代入可得出所求常数项。【详解】,所以,展开式的通项为,令,可得,不存在,因此,展开式中的常数项是,故答案为:。【点睛】本题考查二项式定理,考查指定项系数的求解,解这类问题一般是利用二项式定理将展开式表示为通项,利用指数求出参数,考查计算能力,属于中等题。14、4.【解析】
法一:采用数形结合,可判断的终点是在以AB为直径的圆上,从而分离参数转化成恒成立问题即可得到答案.法二:(特殊值法)可先设,,,利用找出的轨迹,从而将不等式恒成立问题转化为函数问题求解.【详解】法一:作出相关图形,设,,由于,所以,且这两个向量共起点,所以的终点是在以AB为直径的圆上,可设,所以由图可知,,所,等价于,,所以,答案为4.法二:(特殊值法)不妨设,,,则,,,由于可得整理得,可得圆的参数方程为:,则相当于恒成立,即求得,即求的最大值即可,,所以,因此.故答案为4.【点睛】本题主要考查向量的相关运算,参数方程的运用,不等式恒成立问题,意在考查学生的综合转化能力,逻辑推理能力,计算能力,难度较大.15、【解析】
,由此求出结果.【详解】解:与的夹角为,,,.故答案为:.【点睛】本题考查向量的模的求法,考查向量的数量积公式,考查运算能力,属于基础题.16、【解析】分析:把直线的极坐标方程化为直角坐标方程,把的极坐标化为直角坐标,再利用点到直线的距离公式求得它到直线的距离即可.详解:把直线的方程化为直角坐标方程得,点的直角坐标为,由点到直线的距离公式,可得.点睛:本题主要考查了极坐标与直角坐标的互化,以及点到直线的距离公式的应用,着重考查了推理与运算能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)建议李华第一志愿谨慎报考该大学.【解析】
(1)由表中的数据代入公式,计算出和,即可得到关于的线性回归方程;(2)结合(1)计算出2019年录取平均分,再根据该大学每年的录取分数X服从正态分布,由正态分布的性质可计算出李华被录取的概率,由此得到结论.【详解】(1)由题知:,所以得:故所求回归方程为:;(2)由(1)知:当时,,故该大学2019年的录取平均分为577.1分.又因为所以李华被录取的概率:故建议李华第一志愿谨慎报考该大学.【点睛】本题考查线性回归方程以及正态分布,属于中档题.18、(1)见解析;(2)见解析.【解析】分析:(1)折叠前,,折叠后,,从而即可证明;(2)连接交于,连接,在正方形中,连接交于,从而可得,从而在中,,即得,从而平面.详解:(Ⅰ)证明:∵折叠前,∴折叠后,又∵∴平面,而平面∴.(Ⅱ)平面,证明如下:连接交于,连接,在正方形中,连接交于,则,所以,又,即,在中,,所以.平面,平面,所以平面.点睛:本题主要考查线面之间的平行与垂直关系,注意证明线面垂直的核心是证线线垂直,而证明线线垂直则需借助线面垂直的性质.因此,判定定理与性质定理的合理转化是证明线面垂直的基本思想.线面垂直的性质,常用来证明线线垂直.19、【解析】【试题分析】先分别确定命题“方程表示双曲线”中的的取值范围和“命题点在圆的内部”中的取值范围,再依据建立不等式组求解:解:因为方程,表示双曲线,故,所以或,因为点在圆的内部,故,解得:,所以,由为假命题,也为假命题知假、真,所以的取值范围为:.20、(1)(2)【解析】
(1)由已知利用三角函数恒等变换的应用,正弦定理可求,即可求的值.(2)利用三角函数恒等变换的应用,可得,根据题意,得到,解得,得到函数的解析式,进而求得的值,利用三角函数恒等变换的应用可求的值.【详解】(1)由题意,根据正弦定理,可得,又由,所以,可得,即,又因为,则,可得,∵,∴.(2)由(1)可得,所以函数的图象的一条对称轴方程为,∴,得,即,∴,又,∴,∴.【点睛】本题主要考查了三角函数恒等变换的应用,正弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.21、(1)(2)【解析】
(1)记“乙以4比1获胜”为事件A,,则A表示乙赢了3局甲赢了1局,且第五局乙赢,再根据n次独立重复实验中恰好发生k次的概率计算公式求得的值.(2)利用n次独立重复实验中恰好发生k次的概率计算公式
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025中国卫生健康统计概览
- 委托发货协议书范本
- 兼职协议书范本项目
- 2025年干部基础理论知识考试试题库参考及答案
- 知道智慧树懂礼的你最美-当代大学生礼仪满分测试答案
- 公共交通服务质量评价考核试卷
- 家电维修案例中的新型传感器技术应用考核试卷
- 健身器材行业新兴市场健身器材市场售后服务创新考核试卷
- 燃料燃烧过程的光吸收特性研究考核试卷
- 班级管理策略考核试卷
- 风力发电项目投资计划书
- 2025年度食堂餐具设备升级改造采购合同
- 河北公物拍卖管理办法
- 2025年企业首席质量官培训考核试题(含答案)
- (高清版)DB46∕T 707-2025 榴莲栽培技术规程
- 迁地种群遗传多样性-洞察及研究
- Q-CSG1211016-2025 光伏发电站接入电网技术规范
- 2025-2030年古董行业市场深度调研及发展趋势与投资研究报告
- 杨浦区“十五五”规划纲要及专项规划编制工作方案
- DZ/T 0275.2-2015岩矿鉴定技术规范第2部分:岩石薄片制样
- 2019-2024年华数之星系统活动真题汇编(含答案)
评论
0/150
提交评论