四川省绵阳市江油中学2023年高二数学第二学期期末统考试题含解析_第1页
四川省绵阳市江油中学2023年高二数学第二学期期末统考试题含解析_第2页
四川省绵阳市江油中学2023年高二数学第二学期期末统考试题含解析_第3页
四川省绵阳市江油中学2023年高二数学第二学期期末统考试题含解析_第4页
四川省绵阳市江油中学2023年高二数学第二学期期末统考试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.命题“”为真命题的一个充分不必要条件是()A. B. C. D.2.已知是虚数单位,复数在复平面内对应的点位于直线上,则()A. B. C. D.3.某单位有职工160人,其中业务员有104人,管理人员32人,后勤服务人员24人,现用分层抽样法从中抽取一个容量为20的样本,则抽取管理人员()A.3人 B.4人 C.7人 D.12人4.一物体在力(单位)的作用下沿与力相同的方向,从处运动到处(单位,则力所做的功为()A.54焦 B.40焦 C.36焦 D.14焦5.下列说法正确的是()A.“f(0)”是“函数

f(x)是奇函数”的充要条件B.若

p:,,则:,C.“若,则”的否命题是“若,则”D.若为假命题,则p,q均为假命题6.将函数图象上的点向右平移个单位长度得到点,若位于函数的图象上,则()A.,的最小值为 B.,的最小值为C.,的最小值为 D.,的最小值为7.在中,为锐角,,则的形状为()A.直角三角形 B.等腰三角形 C.等腰直角三角形 D.以上都不对8.等差数列的前项和,若,则()A.8 B.10 C.12 D.149.凸10边形内对角线最多有()个交点A. B. C. D.10.若是互不相同的空间直线,是不重合的平面,则下列命题中真命题是()A.若则B.若则C.若,,则D.若,,则11.若|x﹣1|≤x|x+1|,则()A.x1 B.x≤1 C.x1 D.x12.若圆锥的高等于底面直径,侧面积为,则该圆锥的体积为A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在棱长为1的正方体中,点是对角线上的动点(点与不重合),则下列结论正确的是____.①存在点,使得平面平面;②存在点,使得平面;③的面积不可能等于;④若分别是在平面与平面的正投影的面积,则存在点,使得.14.甲、乙两位射击爱好者在某次射击比赛中各射靶5次,命中的环数分别为:甲:7,8,7,4,9;乙:9,5,7,8,6,则射击更稳定的爱好者成绩的方差为________.15.已知圆,圆,直线分别过圆心,且与圆相交于两点,与圆相交于两点,点是椭圆上任意一点,则的最小值为___________;16.某工厂在试验阶段大量生产一种零件,这种零件有、两项技术指标需要检测,设各项技术指标达标与否互不影响,若有且仅有一项技术指标达标的概率为,至少一项技术指标达标的概率为.按质量检验规定:两项技术指标都达标的零件为合格品,任意依次抽取该种零件4个,设表示其中合格品的个数,则______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)若,(Ⅰ)求证:;(Ⅱ)求证:;(Ⅲ)在(Ⅱ)中的不等式中,能否找到一个代数式,满足所求式?若能,请直接写出该代数式;若不能,请说明理由.18.(12分)已知函数.(1)求函数的单调递增区间;(2)求函数在上的最大值和最小值.19.(12分)某射击运动员每次击中目标的概率是,在某次训练中,他只有4发子弹,并向某一目标射击.(1)若4发子弹全打光,求他击中目标次数的数学期望;(2)若他击中目标或子弹打光就停止射击,求消耗的子弹数的分布列.20.(12分)已知矩阵对应的变换将点变换成.(1)求矩阵的逆矩阵;(2)求矩阵的特征向量.21.(12分)已知函数.(Ⅰ)当时,不等式有解,求实数的取值范围;(Ⅱ)当时,不等式恒成立,求的最大值.22.(10分)设椭圆:的离心率与双曲线的离心率互为倒数,且椭圆的长轴长为1.(1)求椭圆的标准方程;(2)若直线交椭圆于,两点,()为椭圆上一点,求面积的最大值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】

根据,成立,求得,再根据集合法,选其子集即可.【详解】因为,成立,所以,成立,所以,命题“”为真命题的一个充分不必要条件是.故选:A【点睛】本题主要考查不等式恒成立及逻辑关系,还考查了运算求解的能力,属于基础题.2、A【解析】

分析:等式分子分母同时乘以,化简整理,得出,再将的坐标代入中求解即可.详解:,所以.解得故选B点睛:复数的除法运算公式,在复平面内点在直线上,则坐标满足直线方程.3、B【解析】

根据分层抽样原理求出应抽取的管理人数.【详解】根据分层抽样原理知,应抽取管理人员的人数为:故选:B【点睛】本题考查了分层抽样原理应用问题,是基础题.4、C【解析】

本题是一个求变力做功的问题,可以利用积分求解,由题意,其积分区间是,,被积函数是力的函数表达式,由积分公式进行计算即可得到答案【详解】由题意得:.故选:C.【点睛】本题考查定积分的应用,物理中的变力所做的功用定积分求解是定积分在物理中的重要应用,正确解答本题的关键是理解功与定积分的对应.5、C【解析】

根据四种命题之间的关系,对选项中的命题分析、判断即可.【详解】对于A,f(0)=0时,函数f(x)不一定是奇函数,如f(x)=x2,x∈R;函数f(x)是奇函数时,f(0)不一定等于零,如f(x),x≠0;是即不充分也不必要条件,A错误;对于B,命题p:,则¬p:∀x∈,x2﹣x﹣1≤0,∴B错误;对于C,若α,则sinα的否命题是“若α,则sinα”,∴C正确.对于D,若p∧q为假命题,则p,q至少有一假命题,∴D错误;故选C.【点睛】本题考查了命题真假的判断问题,涉及到奇函数的性质,特称命题的否定,原命题的否命题,复合命题与简单命题的关系等知识,是基础题.6、A【解析】由题意得由题意得所以,因此当时,的最小值为,选A.点睛:三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移”也常出现在题目中,所以也必须熟练掌握.无论是哪种变形,切记每一个变换总是对字母而言.7、A【解析】分析:由正弦定理化简并结合选项即可得到答案.详解:,则由正弦定理可得:,即,则当时,符合题意,故选:A.点睛:(1)三角形的形状按边分类主要有:等腰三角形,等边三角形等;按角分类主要有:直角三角形,锐角三角形,钝角三角形等.判断三角形的形状,应围绕三角形的边角关系进行思考,主要看其是不是正三角形、等腰三角形、直角三角形、钝角三角形或锐角三角形,要特别注意“等腰直角三角形”与“等腰三角形或直角三角形”的区别.(2)边角转化的工具主要是正弦定理和余弦定理.8、C【解析】试题分析:假设公差为,依题意可得.所以.故选C.考点:等差数列的性质.9、D【解析】

根据凸边形内对角线最多有个交点的公式求得.【详解】凸边形内对角线最多有个交点,又,故选D.【点睛】本题考查凸边形内对角线最多有个交点的公式,属于中档题.10、C【解析】

对于A,考虑空间两直线的位置关系和面面平行的性质定理;对于B,考虑线面垂直的判定定理及面面垂直的性质定理;对于C,考虑面面垂直的判定定理;对于D,考虑空间两条直线的位置关系及平行公理.【详解】选项A中,除平行外,还有异面的位置关系,则A不正确;选项B中,与的位置关系有相交、平行、在内三种,则B不正确;选项C中,由,设经过的平面与相交,交线为,则,又,故,又,所以,则C正确;选项D中,与的位置关系还有相交和异面,则D不正确;故选C.【点睛】该题考查的是有关立体几何问题,涉及到的知识点有空间直线与平面的位置关系,面面平行的性质,线面垂直的判定,面面垂直的判定和性质,属于简单题目.11、A【解析】

对按照,,进行分类讨论,分别解不等式,然后取并集,得到答案.【详解】①当时,,即,解得所以②当时,,即解得或所以③当时,,即解得所以综上所述,故选A项.【点睛】本题考查分类讨论解不含参的绝对值不等式,属于简单题.12、B【解析】

先设底面半径,然后根据侧面积计算出半径,即可求解圆锥体积.【详解】设圆锥的底面半径为,则高为,母线长;又侧面积,所以,所以,故选:B.【点睛】本题考查圆锥的侧面积公式应用以及体积的求解,难度一般.圆锥的侧面积公式:,其中是底面圆的半径,是圆锥的母线长.二、填空题:本题共4小题,每小题5分,共20分。13、①②④【解析】

逐项分析.【详解】①如图当是中点时,可知也是中点且,,,所以平面,所以,同理可知,且,所以平面,又平面,所以平面平面,故正确;②如图取靠近的一个三等分点记为,记,,因为,所以,所以为靠近的一个三等分点,则为中点,又为中点,所以,且,,,所以平面平面,且平面,所以平面,故正确;③如图作,在中根据等面积得:,根据对称性可知:,又,所以是等腰三角形,则,故错误;④如图设,在平面内的正投影为,在平面内的正投影为,所以,,当时,解得:,故正确.故填:①②④.【点睛】本题考查立体几何的综合问题,难度较难.对于判断是否存在满足垂直或者平行的位置关系,可通过对特殊位置进行分析得到结论,一般优先考虑中点、三等分点;同时计算线段上动点是否满足一些情况时,可以设动点和线段某一端点组成的线段与整个线段长度的比值为,然后统一未知数去分析问题.14、2【解析】

分别计算出甲,乙的方差,较小的更加稳定,故为答案.【详解】根据题意,,,同理,,故更稳定的为乙,方差为2.【点睛】本题主要考查统计量方差的计算,难度不大.15、【解析】

根据圆和椭圆的参数方程可假设出点坐标;根据共线、共线可得坐标;写出向量后,根据向量数量积运算法则可求得,从而可知当时,取得最小值,代入求得结果.【详解】由题意可设:,,则,,同理可得:当时,本题正确结果:【点睛】本题考查向量数量积的最值的求解问题,关键是能够灵活应用圆和椭圆的参数方程的形式,表示出所需的点的坐标,从而将问题转化为三角函数最值的求解问题.16、1【解析】

设两项技术指标达标的概率分别为,得到,求得的值,进而得到,可得分布列和的值,得到答案.【详解】由题意,设两项技术指标达标的概率分别为,由题意,得,解得,所以,即一个零件经过检测为合格品的概率为,依题意知,所以.故答案为1.【点睛】本题主要考查了随机变量的分布列及其数学期望的计算,其中解答中根据概率的计算公式,求得的值,得到随机变量是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)证明见解析;(Ⅱ)证明见解析;(Ⅲ)答案见解析.【解析】分析:(Ⅰ)由题意结合绝对值不等式的性质即可证得题中的结论;(Ⅱ)由不等式的性质可证得.则.(Ⅲ)利用放缩法可给出结论:,或.详解:(Ⅰ)因为,且,所以,所以(Ⅱ)因为,所以.又因为,所以由同向不等式的相加性可将以上两式相加得.所以.所以.(i)因为,所以由同向不等式的相加性可将以上两式相加得.所以(ii)所以由两边都是正数的同向不等式的相乘性可将以上两不等式(i)(ii)相乘得.(Ⅲ)因为,,所以,或.(只要写出其中一个即可)点睛:本题主要考查不等式的性质,放缩法及其应用等知识,意在考查学生的转化能力和计算求解能力.18、(1);(2)11,-1【解析】

(1).令,解此不等式,得x<-1或x>1,因此,函数的单调增区间为.(2)令,得或.-当变化时,,变化状态如下表:

-2

-1

1

2

+

0

-

0

+

-1

11

-1

11

从表中可以看出,当时,函数取得最小值.当时,函数取得最大值11.19、(1)(2)见解析【解析】分析:(1)他击中目标次数可能取的值为1,1,2,3,4,由题意,随机变量服从二项分布,即~,则可求4发子弹全打光,击中目标次数的数学期望;(2)由题意随机变量可能取的值是1,2,3,4,由此可求他击中目标或子弹打光就停止射击,求消耗的子弹数的分布列详解:(1)他击中目标次数可能取的值为1,1,2,3,4由题意,随机变量服从二项分布,即~(若列出分布列表格计算期望,酌情给分)(2)由题意随机变量可能取的值是1,2,3,412341.91.191.1191.111点睛:本题考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题.20、(1);(2)和.【解析】

(1)由题中点的变换得到,列方程组解出、的值,再利用逆矩阵变换求出;(2)求出矩阵的特征多项式,解出特征根,即可得出特征值和相应的特征向量.【详解】(1)由题意得,即,解得,,由于矩阵的逆矩阵为,因此,矩阵的逆矩阵为;(2)矩阵的特征多项式为,解特征方程,得或.①当时,由,得,即,可取,则,即属于的一个特征向量为;②当时,由,得,即,可取,则,即属于的一个特征向量为.综上,矩阵的特征向量为和.【点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论