




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知向量与向量的模均为2,若,则它们的夹角是()A. B. C. D.2.设函数f(x)=-,[x]表示不超过x的最大整数,则函数y=[f(x)]的值域为()A.{0} B.{-1,0}C.{-1,0,1} D.{-2,0}3.在的展开式中,记项的系数为,则()A. B. C. D.4.定义“规范01数列”如下:共有项,其中项为0,项为1,且对任意,,,…,中0的个数不少于1的个数.若,则不同的“规范01数列”共有()A.14个 B.13个 C.15个 D.12个5.已知,则为()A.2 B.3 C.4 D.56.与圆及圆都外切的圆的圆心在().A.一个圆上 B.一个椭圆上 C.双曲线的一支上 D.抛物线上7.若关于的不等式恰好有个整数解,则实数的范围为()A. B. C. D.8.抛物线和直线所围成的封闭图形的面积是()A. B. C. D.9.某个命题与正整数有关,如果当时命题成立,那么可推得当时命题也成立。现已知当n=8时该命题不成立,那么可推得A.当n=7时该命题不成立 B.当n=7时该命题成立C.当n=9时该命题不成立 D.当n=9时该命题成立10.命题的否定是()A. B.C. D.11.设是两个不同的平面,是一条直线,以下命题正确的是()A.若,则 B.若,则C.若,则 D.若,则12.已知函数的定义域是,则的展开式中的系数是()A. B.192 C. D.230二、填空题:本题共4小题,每小题5分,共20分。13.计算:________.14.若,则___________.15.若函数的最小正周期为,则的值是________.16.已知复数z=,其中i是虚数单位,则z的实部为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)【选修4-4,坐标系与参数方程】在直角坐标系xOy中,直线l的参数方程为x=22t,y=3+(Ⅰ)求直线l的普通方程与曲线C的直角坐标方程;(Ⅱ)若直线l与y轴的交点为P,直线l与曲线C的交点为A,B,求|PA||PB|的值.18.(12分)已知,,为实数.(1)若,求;(2)若,求实数,的值.19.(12分)已知的内角A的大小为,面积为.(1)若,求的另外两条边长;(2)设O为的外心,当时,求的值.20.(12分)如图,三棱柱中,,,(1)证明:;(2)若平面
平面,,求点到平面的距离.21.(12分)山西省2021年高考将实施新的高考改革方案.考生的高考总成绩将由3门统一高考科目成绩和自主选择的3门普通高中学业水平等级考试科目成绩组成,总分为750分.其中,统一高考科目为语文、数学、外语,自主选择的3门普通高中学业水平等级考试科目是从物理、化学、生物、历史、政治、地理6科中选择3门作为选考科目,语、数、外三科各占150分,选考科目成绩采用“赋分制”,即原始分数不直接用,而是按照学生分数在本科目考试的排名来划分等级并以此打分得到最后得分。根据高考综合改革方案,将每门等级考试科目中考生的原始成绩从高到低分为共8个等级.参照正态分布原则,确定各等级人数所占比例分别为3%、7%、16%、24%、24%、16%、7%、3%.等级考试科目成绩计入考生总成绩时,将A至E等级内的考生原始成绩,依照等比例转换法则,分别转换到八个分数区间,得到考生的等级成绩。举例说明1:甲同学化学学科原始分为65分,化学学科等级的原始分分布区间为,则该同学化学学科的原始成绩属等级,而等级的转换分区间为那么,甲同学化学学科的转换分为:设甲同学化学科的转换等级分为,求得.四舍五入后甲同学化学学科赋分成绩为66分。举例说明2:乙同学化学学科原始分为69分,化学学科等级的原始分分布区间为则该同学化学学科的原始成绩属等级.而等级的转换分区间为这时不用公式,乙同学化学学科赋分成绩直接取下端点70分。现有复兴中学高一年级共3000人,为给高一学生合理选科提供依据,对六个选考科目进行测试,其中物理考试原始成绩基本服从正态分布。且等级为所在原始分分布区间为,且等级为所在原始分分布区间为,且等级为所在原始分分布区间为(1)若小明同学在这次考试中物理原始分为84分,小红同学在这次考试中物理原始分为72分,求小明和小红的物理学科赋分成绩;(精确到整数).(2)若以复兴中学此次考试频率为依据,在学校随机抽取4人,记这4人中物理原始成绩在区间的人数,求的数学期望和方差.(精确到小数点后三位数).附:若随机变量满足正态分布,给出以下数据,22.(10分)在平面直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴正半轴为极轴,建立极坐标系,已知曲线的极坐标方程为.(1)求曲线的直角坐标方程;(2)设点,直线与曲线交于不同的两点,,求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
由题意结合数量积的运算法则可得,据此确定其夹角即可.【详解】∵,∴,∴,故选A.【点睛】本题主要考查向量夹角的计算,向量的运算法则等知识,意在考查学生的转化能力和计算求解能力.2、B【解析】
依题意,由于,所以.当时,,当时,,故的值域为.故选B.【点睛】本小题主要考查指数函数的值域,考查新定义函数的意义,考查了分类讨论的数学思想方法.属于中档题.3、C【解析】
根据题意,表示出展开式的项对应次数,由二项式定理展开式的性质即可求得各项对应的系数,即可求解.【详解】由题意记项的系数为,可知对应的项为;对应的项为;对应的项为;对应的项为;而展开式中项的系数为;对应的项的系数为;对应的项的系数为;对应的项的系数为;所以,故选:C.【点睛】本题考查了二项式定理展开式及性质的简单应用,属于基础题.4、A【解析】分析:由新定义可得,“规范01数列”有偶数项2m项,且所含0与1的个数相等,首项为0,末项为1,当m=4时,数列中有四个0和四个1,然后一一列举得答案.详解:由题意可知,“规范01数列”有偶数项2m项,且所含0与1的个数相等,首项为0,末项为1,若m=4,说明数列有8项,满足条件的数列有:0,0,0,0,1,1,1,1;0,0,0,1,0,1,1,1;0,0,0,1,1,0,1,1;0,0,0,1,1,1,0,1;0,0,1,0,0,1,1,1;0,0,1,0,1,0,1,1;0,0,1,0,1,1,0,1;0,0,1,1,0,1,0,1;0,0,1,1,0,0,1,1;0,1,0,0,0,1,1,1;0,1,0,0,1,0,1,1;0,1,0,0,1,1,0,1;0,1,0,1,0,0,1,1;0,1,0,1,0,1,0,1.共14个.故答案为:A.点睛:本题是新定义题,考查数列的应用,关键是对题意的理解,枚举时做到不重不漏.5、A【解析】
根据自变量范围代入对应解析式,解得结果.【详解】故选:A【点睛】本题考查分段函数求值,考查基本分析求解能力,属基础题.6、C【解析】
设动圆的半径为,然后根据动圆与圆及圆都外切得,再两式相减消去参数,则满足双曲线的定义,即可求解.【详解】设动圆的圆心为,半径为,而圆的圆心为,半径为1;圆的圆心为,半径为1.依题意得,则,所以点的轨迹是双曲线的一支.故选C.【点睛】本题主要考查了圆与圆的位置关系,以及双曲线的定义的应用,其中解答中熟记圆与圆的位置关系和双曲线的定义是解答的关键,着重考查了推理与运算能力,属于基础题.7、C【解析】
依题意可得,0<k<1,结合函数y=k|x|与y=﹣|x﹣2|的图象可得4个整数解是2,3,4,5,由⇒x,即可得k.【详解】解:依题意可得,0<k<1,函数y=k|x|与y=﹣|x﹣2|的图象如下,由0<k<1,可得xA>1,∴关于x的不等式k|x|﹣|x﹣2|>0恰好有4个整数解,他们是2,3,4,5,由⇒xB,故k;故选:C【点睛】本题主要考查根据含参绝对值不等式的整数解的个数,求参数范围问题,着重考查了数形结合思想,属于中档题.8、C【解析】
先计算抛物线和直线的交点,再用定积分计算面积.【详解】所围成的封闭图形的面积是:故答案为C【点睛】本题考查了定积分的应用,意在考查学生应用能力和计算能力.9、A【解析】
根据逆否命题和原命题的真假一致性得,当时命题不成立,则命题也不成立,所以选A.【详解】根据逆否命题和原命题的真假一致性得,当时命题不成立,则命题也不成立,所以当时命题不成立,则命题也不成立,故答案为:A【点睛】(1)本题主要考查数学归纳法和逆否命题,意在考查学生对这些知识的掌握水平和分析推理能力.(2)互为逆否关系的命题同真同假,即原命题与逆否命题的真假性相同,原命题的逆命题和否命题的真假性相同.所以,如果某些命题(特别是含有否定概念的命题)的真假性难以判断,一般可以判断它的逆否命题的真假性.10、B【解析】试题分析:全称命题的否定是特称命题,所以:,故选B.考点:1.全称命题;2.特称命题.11、C【解析】对于A、B、D均可能出现,而对于C是正确的.12、A【解析】
函数的定义域是可知,-1和2是方程的两根,代入可求得值,再根据二项式定理的通项公式进行求解即可【详解】因为的定义域,所以-1和2是方程的两根,将-1代入方程可得,则二项式定理为根据二项式定理的通项公式,,的系数答案选A【点睛】本题考察了一元二次方程根与系数的关系,二项式定理通项公式的求法及二项式系数的求法,难度不大,但综合性强二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
计算出和的值,代入即可计算出结果.【详解】由题意得,故答案为.【点睛】本题考查三角函数值的计算,解题的关键在于将特殊角的三角函数值计算出来,考查计算能力,属于基础题.14、【解析】
先化简已知得,再利用平方关系求解.【详解】由题得,因为,所以故答案为:【点睛】本题主要考查诱导公式和同角的平方关系,意在考察学生对这些知识的掌握水平和分析推理能力.15、【解析】试题分析:考点:三角函数周期【方法点睛】已知函数的图象求解析式(1).(2)由函数的周期求(3)利用“五点法”中相对应的特殊点求.16、【解析】分析:先化简复数z=,再确定复数z的实部.详解:由题得z==,所以复数z的实部为,故答案为.点睛:(1)本题主要考查复数的运算和复数的实部的概念,意在考查学生对这些基础知识的掌握水平和基本运算能力.(2)复数的实部是a,虚部为b,不是bi.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)直线l的普通方程为x-y+3=0,曲线C的直角坐标方程为(x+1)2+(y-2)【解析】试题分析:本题主要考查参数方程、极坐标方程与直角坐标方程的转化、直线与圆的位置关系等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,利用x2+y2=ρ2试题解析:(Ⅰ)直线l的普通方程为x-y+3=0,ρ2曲线C的直角坐标方程为(x+1)2(Ⅱ)将直线的参数方程x=22ty=3+22t(t1|PA||PB|=|t考点:本题主要考查:1.极坐标方程,参数方程与直角方程的相互转化;2.直线与圆的位置关系.18、(1);(2)-3,2【解析】分析:(1)利用复数乘法的运算法则以及共轭复数的定义化简,利用复数模的公式求解即可;(2)利用复数除法的运算法则将,化为,由复数相等的性质可得,从而可得结果.详解:(1)∵,∴.∴,∴;(2)∵,∴.∴,解得,∴,的值为:-3,2.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分19、(1),;(2)或【解析】
(1)由三角形面积公式得到AC边,再由余弦定理即可得出BC边;(2)由(1)可知,利用余弦定理可求,设的中点为,则,结合为的外心,可得,从而可求得.【详解】(1)设的内角A,B,C的对边分别为a,b,c,于是,所以因为,所以.由余弦定理得.(2)由得,即,解得或4.设的中点为D,则,因为O为的外心,所以,于是.所以当时,,;当时,,.【点睛】本题主要考查三角形的面积公式及余弦定理的应用以及向量的基本运算和性质的应用.属于中档题.20、(1)见解析(2)【解析】试题分析:(1)利用题意首先证得,然后利用线面垂直的定义即可证得题中的结论;(2)建立空间直角坐标系,结合平面的法向量和直线的方向向量可得直线与平面所成角的正弦值是.试题解析:(1)证明:如图所示,取的中点,连接,,.因为,所以.由于,,故为等边三角形,所以.因为,所以.又,故(2)由(1)知,,又,交线为,所以,故两两相互垂直.以为坐标原点,的方向为轴的正方向,为单位长,建立如图(2)所示的空间直角坐标系.由题设知,则,,.设是平面的法向量,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安全培训自查自评报告课件
- 2025湖南省邵阳学院公开招聘事业编制人员22人模拟试卷及答案详解(易错题)
- 涂料印花课件
- 2025年度国家粮食和物资储备局直属联系单位和垂直管理系统事业单位招聘统一笔试河南工业大学考点考前自测高频考点模拟试题及一套完整答案详解
- 海陆分布的影响
- 2025贵州罗甸县第一医共体平岩分院招聘合同制专业技术人员模拟试卷有答案详解
- 安全培训考点引导课件
- 2025年淮南毛集实验区招聘区属国有企业3人考前自测高频考点模拟试题及1套完整答案详解
- 2025广西百色市第三人民医院(百色市应急医院)公开招聘5人模拟试卷有答案详解
- 安全培训考核目的和意义
- 大学生心理健康教育(兰州大学)
- 安平丝网知识培训课件
- 粤教粤科版(2024)小学科学一年级上册《常见的天气》教案
- 医院感染管理的重要性
- 2025年中石油英语试题及答案
- 口腔门诊客户投诉处理与管理
- 统编版(2024)八年级上册历史全册教材问题参考答案
- 《电工电子技术》课件-第1章 电路理论基础及分析方法
- 《无人机飞行控制技术》全套教学课件
- 四渡赤水军事教学课件
- 刚新修订《治安管理处罚法》培训
评论
0/150
提交评论