四川省德阳市罗江中学2023年数学高二第二学期期末达标测试试题含解析_第1页
四川省德阳市罗江中学2023年数学高二第二学期期末达标测试试题含解析_第2页
四川省德阳市罗江中学2023年数学高二第二学期期末达标测试试题含解析_第3页
四川省德阳市罗江中学2023年数学高二第二学期期末达标测试试题含解析_第4页
四川省德阳市罗江中学2023年数学高二第二学期期末达标测试试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设,则在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.已知函数,则方程的根的个数为()A.7 B.5 C.3 D.23.函数的零点所在的区间是()A. B. C. D.4.使函数y=xsinx+cosx是增函数的区间可能是()A. B.(π,2π)C. D.(2π,3π)5.随机变量的分布列为12340.20.30.4则()A.4.8 B.5 C.6 D.8.46.执行如图所示的程序框图,若,则输出的为()A. B. C. D.7.如图,将一个各面都涂了油漆的正方体,切割为个同样大小的小正方体,经过搅拌后,从中随机取出一个小正方体,记它的油漆面数为,则的均值()A. B. C. D.8.已知函数是可导函数,且,则()A. B. C. D.9.下列函数中,既是偶函数又在单调递增的是()A. B. C. D.10.已知,则()附:若,则,A.0.3174 B.0.1587 C.0.0456 D.0.022811.如果,则的解析式为()A. B.C. D.12.是虚数单位,复数满足,则A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.随机变量X服从于正态分布N(2,σ2)若P(X≤0)=a,则P(2<X<4)=_____14.以椭圆的顶点为焦点,焦点为顶点的双曲线方程的标准方程是_______.15.某校高二学生一次数学诊断考试成绩(单位:分)服从正态分布,从中抽取一个同学的数学成绩,记该同学的成绩为事件,记该同学的成绩为事件,则在事件发生的条件下事件发生的概率______.(结果用分数表示)附参考数据:;;.16.在的展开式中,项的系数为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设椭圆:的离心率与双曲线的离心率互为倒数,且椭圆的长轴长为1.(1)求椭圆的标准方程;(2)若直线交椭圆于,两点,()为椭圆上一点,求面积的最大值.18.(12分)已知函数.(1)若,求函数的最大值;(2)令,讨论函数的单调区间;(3)若,正实数满足,证明.19.(12分)改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月对甲、乙两种移动支付方式的使用情况,从全校学生中随机抽取了100人作为样本,发现样本中甲、乙两种支付方式都不使用的有10人,样本中仅使用甲种支付方式和仅使用乙种支付方式的学生的支付金额分布情况如下:支付金额(元)支付方式大于1000仅使用甲15人8人2人仅使用乙10人9人1人(1)从全校学生中随机抽取1人,估计该学生上个月甲、乙两种支付方式都使用的概率;(2)从样本中仅使用甲种支付方式和仅使用乙种支付方式的学生中各随机抽取1人,以表示这2人中上个月支付金额大于500元的人数,用频率近似代替概率,求的分布列和数学期望20.(12分)近日,某地普降暴雨,当地一大型提坝发生了渗水现象,当发现时已有的坝面渗水,经测算,坝而每平方米发生渗水现象的直接经济损失约为元,且渗水面积以每天的速度扩散.当地有关部门在发现的同时立即组织人员抢修渗水坝面,假定每位抢修人员平均每天可抢修渗水面积,该部门需支出服装补贴费为每人元,劳务费及耗材费为每人每天元.若安排名人员参与抢修,需要天完成抢修工作.写出关于的函数关系式;应安排多少名人员参与抢修,才能使总损失最小.(总损失=因渗水造成的直接损失+部门的各项支出费用)21.(12分)如图,在四棱锥中,底面为正方形,平面平面,点在线段上,平面,,.(1)求证:为的中点;(2)求直线与平面所成角的正弦值.22.(10分)在直角坐标平面内,直线l过点P(1,1),且倾斜角α=.以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,已知圆C的极坐标方程为ρ=4sinθ.(1)求圆C的直角坐标方程;(2)设直线l与圆C交于A,B两点,求|PA|·|PB|的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】

先求出,再判断得解.【详解】,所以复数对应的点为(3,5),故复数表示的点位于第一象限.故选A【点睛】本题主要考查共轭复数的计算和复数的几何意义,意在考查学生对该知识的理解掌握水平,属于基础题.2、A【解析】

令,先求出方程的三个根,,,然后分别作出直线,,与函数的图象,得出交点的总数即为所求结果.【详解】令,先解方程.(1)当时,则,得;(2)当时,则,即,解得,.如下图所示:直线,,与函数的交点个数为、、,所以,方程的根的个数为,故选A.【点睛】本题考查复合函数的零点个数,这类问题首先将函数分为内层函数与外层函数,求出外层函数的若干个根,再作出这些直线与内层函数图象的交点总数即为方程根的个数,考查数形结合思想,属于难题.3、B【解析】分析:根据基本初等函数的性质,确定函数在上是增函数,且满足,,结合函数的零点判定定理可得函数的零点所在的区间.详解:由基本初等函数可知与均为在上是增函数,所以在上是增函数,又,根据函数零点的判定定理可得函数的零点所在的区间是.故选B.点睛:本题主要考查求函数的值,函数零点的判定定理,属于基础题.4、C【解析】

求函数y=xsinx+cosx的导函数,根据导函数分析出它的单调增区间.【详解】由函数得,=.观察所给的四个选项中,均有,故仅需,结合余弦函数的图像可知,时有,所以答案选C.【点睛】本题主要考查利用导数研究函数的单调性,对于函数,当时,函数单调递增;当时,函数单调递减,这是解题关键.此题属于基础题.5、B【解析】分析:先求出a,再求,再利用公式求.详解:由题得a=1-0.2-0.3-0.4=0.1.由题得.所以所以.故答案为:B.点睛:(1)本题主要考查概率的计算和随机变量的期望的计算,意在考查学生对这些基础知识的掌握水平和基本的运算能力.(2)若(a、b是常数),是随机变量,则也是随机变量,.6、B【解析】

执行程序框图,依次写出每次循环得到的的值,当时,不满足条件,退出循环,输出的值.【详解】执行如图所示的程序框图,有满足条件,有,;满足条件,有,;满足条件,有,;满足条件,有,;不满足条件,退出循环,输出的值为本题正确选项:【点睛】本题考查了程序框图和算法的应用问题,是对框图中的循环结构进行了考查,属于基础题.7、C【解析】分析:由题意知,分别求出相应的概率,由此能求出.详解:由题意知,;;;;.故选:C.点睛:正确找出所涂油漆的面数的正方体的个数及古典概型的概率计算公式、分布列与数学期望是解题的关键.8、C【解析】分析:由题意结合导数的定义整理计算即可求得最终结果.详解:由题意可得:,即:.本题选择C选项.点睛:本题主要考查函数在某一点处导数的定义及其应用,意在考查学生的转化能力和计算求解能力.9、B【解析】

根据函数的奇偶性和单调性,对选项逐一分析,由此得出正确选项.【详解】对于A选项,由于定义域不关于原点对称,故为非奇非偶函数.对于B选项,函数为偶函数,当时,为增函数,故B选项正确.对于C选项,函数图像没有对称性,故为非奇非偶函数.对于D选项,在上有增有减.综上所述,本小题选B.【点睛】本小题主要考查函数的奇偶性与单调性,属于基础题.10、D【解析】

由随机变量,所以正态分布曲线关于对称,再利用原则,结合图象得到.【详解】因为,所以,所以,即,所以.选D.【点睛】本题主要考查正态分布曲线及原则,考查正态分布曲线图象的对称性.11、C【解析】

根据配凑法,即可求得的解析式,注意定义域的范围即可.【详解】因为,即令,则,即所以选C【点睛】本题考查了配凑法在求函数解析式中的应用,注意定义域的范围,属于基础题.12、D【解析】

运用复数除法的运算法则可以直接求出复数的表达式.【详解】,故本题选D.【点睛】本题考查了复数的除法运算法则,考查了数学运算能力.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

利用正态分布的对称性,求得的值.【详解】由条件知,故.【点睛】本小题主要考查正态分布在指定区间的概率,属于基础题.14、【解析】分析:由椭圆的焦点为,顶点为,可得双曲线的焦点与顶点,从而可得双曲线方程.详解:椭圆的焦点为,顶点为,双曲线的顶点与焦点分别为,可得,所以双曲线方程是,故答案为.点睛:本题考查椭圆与双曲线的简单性质应用,意在考查综合应用所学知识解决问题的能力,解题时要认真注意审题,特别注意考虑双曲线的焦点位置.15、【解析】

计算出和,然后利用条件概率公式可得出的值.【详解】由题意可知,,事件为,,,所以,,,由条件概率公式得,故答案为:.【点睛】本题考查条件概率的计算,同时也考查了正态分布原则计算概率,解题时要将相应的事件转化为正态分布事件,充分利用正态密度曲线的对称性计算,考查计算能力,属于中等题.16、【解析】

利用二项式展开式的通项公式,求得项的系数.【详解】二项式,展开式中含项为,所以项的系数为.故答案为:.【点睛】本小题主要考查二项式展开式的通项公式,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】试题分析:(Ⅰ)利用椭圆的离心率与双曲线的离心率互为倒数,椭圆的长轴为及,求得的值,进而求得椭圆的方程;(Ⅱ)将直线与(Ⅰ)求得的椭圆方程联立,利用韦达定理和,利用弦长公式及点到直线的距离,求得的面积,同时,进而求得的面积的最大值.试题解析:(Ⅰ)双曲线的离心率为(1分),则椭圆的离心率为(2分),2a=1,(3分)由⇒,故椭圆M的方程为.(5分)(Ⅱ)由,得,(6分)由,得﹣2<m<2∵,.(7分)∴=又P到AB的距离为.(10分)则,(12分)当且仅当取等号(13分)∴.(11分)考点:1.椭圆的标准方程;2.韦达定理;3.弦长公式.18、(1)f(x)的最大值为f(1)=1.(2)见解析(3)见解析【解析】试题分析:(Ⅰ)代入求出值,利用导数求出函数的极值,进而判断最值;(Ⅱ)求出,求出导函数,分别对参数分类讨论,确定导函数的正负,得出函数的单调性;(Ⅲ)整理方程,观察题的特点,变形得,故只需求解右式的范围即可,利用构造函数,求导的方法求出右式的最小值.试题解析:(Ⅰ)因为,所以a=-2,此时f(x)=lnx-x2+x,f'(x)=-2x+1,由f'(x)=1,得x=1,∴f(x)在(1,1)上单调递增,在(1,+∞)上单调递减,故当x=1时函数有极大值,也是最大值,所以f(x)的最大值为f(1)=1.

(Ⅱ)g(x)=f(x)-ax2-ax+1,∴g(x)=lnx-ax2-ax+x+1,当a=1时,g'(x)>1,g(x)单调递增;当a>1时,x∈(1,)时,g'(x)>1,g(x)单调递增;x∈(,+∞)时,g'(x)<1,g(x)单调递减;当a<1时,g'(x)>1,g(x)单调递增;(Ⅲ)当a=2时,f(x)=lnx+x2+x,x>1,.由f(x1)+f(x2)+x1x2=1,即lnx1+x12+x1+lnx2+x22+x2+x2x1=1.从而(x1+x2)2+(x1+x2)=x1x2-ln(x1x2),.令t=x2x1,则由φ(t)=t-lnt得,φ'(t)=.可知,φ(t)在区间(1,1)上单调递减,在区间(1,+∞)上单调递增.所以φ(t)≥1,所以(x1+x2)2+(x1+x2)≥1,正实数x1,x2,∴.19、(1)0.45;(2)的分布列见解析;数学期望为0.9【解析】

(1)用减去仅使用甲、仅使用乙和两种都不使用的人数,求得都使用的人数,进而求得所求概率.(2)的所有可能值为0,1,2.根据相互独立事件概率计算公式,计算出的分布列,并求得数学期望.【详解】解:(1)由题意知,样本中仅使用甲种支付方式的学生有人,仅使用乙种支付方式的学生有人,甲、乙两种支付方式都不使用的学生有10人.故样本中甲、乙两种支付方式都使用的学生有人所以从全校学生中随机抽取1人,该学生上个月甲、乙两种支付方式都使用的概率估计为.(2)的所有可能值为0,1,2.记事件为“从样本仅使用甲种支付方式的学生中随机抽取1人,该学生上个月的支付金额大于500元”,事件为“从样本仅使用乙种支付方式的学生中随机抽取1人,该学生上个月的支付金额大于500元”.由题设知,事件A,B相互独立,且所以所以的分布列为0120.30.50.2故的数学期望【点睛】本小题主要考查频率的计算,考查相互独立事件概率计算,考查离散型随机变量分布列和数学期望的计算,属于中档题.20、(1)(2)应安排名民工参与抢修,才能使总损失最小【解析】

(1)由题意得要抢修完成必须使得抢修的面积等于渗水的面积,即可得,所以;(2)损失包=渗水直接经济损失+抢修服装补贴费+劳务费耗材费,即可得到函数解析式,再利用基本不等式,即可得到结果.【详解】由题意,可得,所以.设总损失为元,则当且仅当,即时,等号成立,所以应安排名民工参与抢修,才能使总损失最小.【点睛】本题主要考查了函数的实际应用问题,以及基本不等式求最值的应用,其中解答中认真

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论