




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知可导函数的导函数为,若对任意的,都有,且为奇函数,则不等式的解集为()A. B. C. D.2.己知某产品的销售额y与广告费用x之间的关系如下表:若求得其线性回归方程为,其中,则预计当广告费用为6万元时的销售额是()A.42万元 B.45万元 C.48万元 D.51万元3.使函数y=xsinx+cosx是增函数的区间可能是()A. B.(π,2π)C. D.(2π,3π)4.设,则()A. B. C. D.5.恩格尔系数,国际上常用恩格尔系数来衡量一个地区家庭的富裕程度,某地区家庭2018年底恩格尔系数为,刚达到小康,预计从2019年起该地区家庭每年消费支出总额增加,食品消费支出总额增加,依据以上数据,预计该地区家庭恩格尔系数满足达到富裕水平至少经过()(参考数据:,,,)A.年 B.年 C.年 D.年6.将本不同的书全部分给甲乙丙三人,每人至少一本,则不同的分法总数为()A. B. C. D.7.已知双曲线的左顶点与抛物线的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为,则双曲线的方程为()A. B. C. D.8.已知函数的导函数为,且满足,则()A. B.1 C.-1 D.9.若,则的取值范围为()A. B. C. D.10.从1,2,3,4,5,6,7,8,9中不放回地依次取2个数,事件“第一次取到的是偶数”,“第二次取到的是偶数”,则()A. B. C. D.11.给出下列命题:①过圆心和圆上的两点有且只有一个平面②若直线与平面平行,则与平面内的任意一条直线都没有公共点③若直线上有无数个点不在平面内,则④如果两条平行线中的一条与一个平面平行,那么另一条也与这个平面平行⑤垂直于同一个平面的两条直线平行其中正确的命题的个数是A.1 B.2 C.3 D.412.已知为虚数单位,若复数的实部为-2,则()A.5 B. C. D.13二、填空题:本题共4小题,每小题5分,共20分。13.若将函数表示为,其中为实数,则等于_______.14.设函数,若对任意的,存在,使得,则实数的取值范围是______________.15.已知抛物线的方程为,为坐标原点,,为抛物线上的点,若为等边三角形,且面积为,则的值为__________.16.已知某商场在一周内某商品日销售量的茎叶图如图所示,那么这一周该商品日销售量的平均数为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知四棱锥的底面是菱形,且,,,O为AB的中点.(1)求证:平面;(2)求点B到平面的距离.18.(12分)已知函数在上是奇函数,且在处取得极小值.(1)求的解析式;(2)求过点且与曲线相切的切线方程.19.(12分)已知函数.(1)求的最小值;(2)证明:对一切,都有成立.20.(12分)如图,长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=m,点M是棱CD的中点.(1)求异面直线B1C与AC1所成的角的大小;(2)是否存在实数m,使得直线AC1与平面BMD1垂直?说明理由;(3)设P是线段AC1上的一点(不含端点),满足λ,求λ的值,使得三棱锥B1﹣CD1C1与三棱锥B1﹣CD1P的体积相等.21.(12分)某高校共有学生15000人,其中男生10500人,女生4500人.为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时).(1)应收集多少位女生的样本数据?(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据的分组区间为:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估计该校学生每周平均体育运动时间超过4小时的概率.(3)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.附:22.(10分)如图,三棱柱中,,,(1)证明:;(2)若平面
平面,,求点到平面的距离.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
构造函数,利用导数研究函数的单调性,利用函数为奇函数得出,将不等式转化为,即,利用函数的单调性可求解.【详解】构造函数,则,所以,函数在上单调递减,由于函数为奇函数,则,则,,由,得,即,所以,,由于函数在上为单调递减,因此,,故选A.【点睛】本题考查利用函数的单调性解函数不等式问题,解决本题的关键在于构造新函数,一般而言,利用构造新函数来解函数不等式的基本步骤如下:(1)根据导数不等式结构构造新函数;(2)对函数求导,确定函数的单调性,必要时分析函数的单调性;(3)将不等式转化为,利用函数的单调性得出与的大小关系.2、C【解析】
由已知求得样本点的中心的坐标,代入线性回归方程求得,则线性回归方程可求,取求得y值即可.【详解】,,样本点的中心的坐标为,代入,得.关于x得线性回归方程为.取,可得万元.故选:C.【点睛】本题考查线性回归方程的求法,考查计算能力,是基础题.3、C【解析】
求函数y=xsinx+cosx的导函数,根据导函数分析出它的单调增区间.【详解】由函数得,=.观察所给的四个选项中,均有,故仅需,结合余弦函数的图像可知,时有,所以答案选C.【点睛】本题主要考查利用导数研究函数的单调性,对于函数,当时,函数单调递增;当时,函数单调递减,这是解题关键.此题属于基础题.4、A【解析】
根据复数除法运算得到,根据复数模长定义可求得结果.【详解】,.故选:.【点睛】本题考查复数模长的求解,涉及到复数的除法运算,属于基础题.5、B【解析】
根据“每年消费支出总额增加,食品消费支出总额增加”以及列不等式,解不等式求得至少经过的年份.【详解】设经过的年份为年,依题意有,即,两边取以为底的对数得,即,故至少经过年,可使家庭恩格尔系数满足达到富裕水平.故选B.【点睛】本小题主要考查指数不等式的解法,考查对数运算,考查实际生活中的函数运用,考查阅读与理解能力,属于中档题.6、C【解析】分析:分两种情况:一人得本,另两个人各得本;一人得本,另两个人各得本,分别求出不同的分法即可得结果.详解:分两种情况:一人得本,另两个人各得本,有种分法,一人得本,另两个人各得本,有种分法,共有种分法,故选C.点睛:本题主要考查分类计数原理与分步计数原理及排列组合的应用,属于难题.有关排列组合的综合问题,往往是两个原理及排列组合问题交叉应用才能解决问题,解答这类问题理解题意很关键,一定多读题才能挖掘出隐含条件.解题过程中要首先分清“是分类还是分步”、“是排列还是组合”,在应用分类计数加法原理讨论时,既不能重复交叉讨论又不能遗漏,这样才能提高准确率.7、B【解析】
由已知方程即可得出双曲线的左顶点、一条渐近线方程与抛物线的焦点、准线的方程,再根据数量关系即可列出方程,解出即可.【详解】解:∵双曲线的左顶点(﹣a,0)与抛物线y2=2px(p>0)的焦点F(,0)的距离为1,∴a=1;又双曲线的一条渐近线与抛物线的准线的交点坐标为(﹣2,﹣1),∴渐近线的方程应是yx,而抛物线的准线方程为x,因此﹣1(﹣2),﹣2,联立得,解得a=2,b=1,p=1.故双曲线的标准方程为:.故选:B.【点睛】本题考查抛物线以及双曲线的简单性质的应用,熟练掌握圆锥曲线的图象与性质是解题的关键.8、C【解析】试题分析:∵函数的导函数为,且满足,,∴,把代入可得,解得,故选C.考点:(1)导数的乘法与除法法则;(2)导数的加法与减法法则.9、D【解析】
由,得,设,,当时,递减;当时,递增,,,故选D.【方法点晴】本题主要考查利用导数求函数的最值以及不等式恒成立问题.不等式恒成立问题常见方法:①分离参数恒成立(可)或恒成立(即可);②数形结合(图象在上方即可);③讨论最值或恒成立;④讨论参数.本题是利用方法①求得的范围.10、B【解析】分析:事件A发生后,只剩下8个数字,其中只有3个偶数字,由古典概型概率公式可得.详解:在事件A发生后,只有8个数字,其中只有3个偶数字,∴.故选B.点睛:本题考查条件概率,由于是不放回取数,因此事件A的发生对B的概率有影响,可考虑事件A发生后基本事件的个数与事件B发生时事件的个数,从而计算概率.11、B【解析】
依照立体几何相关知识,逐个判断各命题的真假。【详解】在①中,当圆心和圆上两点共线时,过圆心和圆上的两点有无数个平面,故①错误;在②中,若直线与平面平行,则与平面内的任意一条直线平行或异面,都没有公共点,故②正确;在③中,若直线上有无数个点不在平面内,则与相交或平行,故③错误;在④中,如果两条平行线中的一条与一个平面平行,那么另一条也与这个平面平行或在这个平面内,故④错误;在⑤中,由线面垂直的性质定理得垂直于同一个平面的两条直线平行,故⑤正确.故选.12、C【解析】分析:利用复数的除法运算得到,进的得到.详解:由题复数的实部为-2,则故选C.点睛:本题考查复数的除法运算及复数的模,属基础题.二、填空题:本题共4小题,每小题5分,共20分。13、20.【解析】
把函数f(x)=x6=[﹣1+(1+x)]6按照二项式定理展开,结合已知条件,求得a3的值.【详解】∵函数f(x)=x6=[﹣1+(1+x)]6=1•(1+x)•(1+x)2•(1+x)3•(1+x)6,又f(x)=a0+a1(1+x)+a2(1+x)2+…a6(1+x)6,其中a0,a1,a2,…,a6为实数,则a320,故答案为20.【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,属于基础题.14、【解析】
由任意的,存在,使得,可得在的值域为在的值域的子集,构造关于实数的不等式,可得结论。【详解】由题可得:,令,解得:,令,解得:,令,解得:所以在上单调递增,在上单调递减,,,故在的值域为;,所以在为偶函数;当时,,由于,则,,由,即当时,,故函数在上单调递增,在单调递减,,,故在的值域为;由任意的,存在,使得,可得在的值域为在的值域的子集,则,解得:;所以实数的取值范围是【点睛】本题考查利用导数求函数的最值,解题的关键是根据条件分析出在的值域为在的值域的子集,属于中档题。15、2【解析】设,,∵,∴.又,,∴,即.又、与同号,∴.∴,即.根据抛物线对称性可知点,关于轴对称,由为等边三角形,不妨设直线的方程为,由,解得,∴.∵的面积为,∴,解得,∴.答案:2点睛:本题考查抛物线性质的运用,解题的关键是根据条件先判断得到点A,B关于x轴对称,然后在此基础上得到直线直线(或)的方程,通过解方程组得到点(或A)的坐标,求得等边三角形的边长后,根据面积可得.16、【解析】
直接计算平均数得到答案.【详解】.故答案为:.【点睛】本题考查了茎叶图的平均值,意在考查学生的计算能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)【解析】
(1)连结,推导出,由此能证明平面.(2)利用等体积法求距离即可.【详解】(1)证明:连结,四棱锥的底面是菱形,且,,,O为AB的中点...平面.(2)在中,,则,,.故点B到平面的距离.【点睛】本题考查线面垂直的判断定理,考查等体积法求点到面的距离,难度一般.18、(1);(2).【解析】
(1)根据奇函数性质可知;利用极值点和极值可得到方程组,解方程组求得解析式;(2)设切点坐标,利用切线斜率等于在切点处的导数值,又等于两点连线斜率来构造方程求得,进而得到切线斜率,从而得到切线方程.【详解】(1)是定义在上的奇函数则,解得:(2)设切点坐标为:,则在处切线斜率:又,解得:过的切线方程为:,即:【点睛】本题考查利用函数性质和极值求解函数解析式、求过某一点处切线方程的求解问题;考查学生对于导数与极值的关系、导数几何意义的掌握情况,属于导数的基础应用问题.19、(I).(Ⅱ)见解析.【解析】
(1)先求出函数的定义域,然后求导数,根据导函数的正负判断函数的单调性进而可求出最小值.(2)对一切,都有成立,即,结合(1)中结论可知,构造新函数,分析其最大值,可得答案.【详解】(1)的定义域为,的导数.令,解得;令,解得.从而在单调递减,在,单调递增.所以,当时,取得最小值.(2)若则,由(1)得:,当且仅当时,取最小值;设,则,时,,单调递增,时,,单调递减,故当时,取最大值故对一切,都有成立.【点睛】本题考查的知识点是函数在某点取得极值的条件,导数在最值问题中的应用,属于难题.20、(1)90°(2)存在,m,理由见解析(3)λ【解析】
(1)根据题意只需证明平面,即可得到B1C⊥AC1,从而可得答案.(2)存在实数m,使得直线AC1与平面BMD1垂直.只需证明BM⊥AC1,AC1⊥D1M,即可得到直线AC1⊥平面BMD1;(3)计算,,设AC1与平面B1CD1的斜足为O,则AO=2OC1,则P为AO的中点,从而可得答案.【详解】(1)连接BC1,如图所示:由四边形BCC1B1为正方形,可得B1C⊥BC1,又ABCD﹣A1B1C1D1为长方体,可得AB⊥B1C,而AB∩BC1=B,∴B1C⊥平面ABC1,而AC1⊂平面ABC1,∴B1C⊥AC1,即异面直线B1C与AC1所成的角的大小为90°;(2)存在实数m,使得直线AC1与平面BMD1垂直.事实上,当m时,CM,∵BC=1,∴,则Rt△ABC∽Rt△BCM,则∠CAB=∠MBC,∵∠CAB+∠ACB=90°,∴∠MBC+∠ACB=90°,即AC⊥BM,又CC1⊥BM,AC∩CC1=C,∴BM⊥平面ACC1,则BM⊥AC1,同理可证AC1⊥D1M,又D1M∩BM=M,∴直线AC1⊥平面BMD1;(3)∵,,设AC1与平面B1CD1的斜足为O,则AO=2OC1,∴在线段AC1上取一点P,要使三棱锥B1﹣CD1C1与三棱锥B1﹣CD1P的体积相等,则P为AO的中点,即.【点睛】本题考查了直线与平面垂直的判定定理,考查了直线与平面垂直的性质,考查了棱柱和棱锥的体积公式,属于中档题.21、(1)90;(2);(3)有的把握认为“该校学生的每周平均课外阅读时间与性别有关”
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公司老年活动室管理制度
- 公司车辆etc管理制度
- 公司餐厅规章制度管理制度
- 出租汽车公司化管理制度
- 医药公司中心房间管理制度
- 可口可乐公司员工日常管理制度
- 培训机构员工信息管理制度
- 客运公司经营科管理制度
- 对商业伙伴实行管理制度
- 山西省手术分级管理制度
- 2025年甘肃省高考化学试卷真题(含答案解析)
- 叉车工安全考试
- 公安院校公安专业招生考生患病经历申报表
- (2025)发展对象必考试题与答案
- 第一课-入乡随俗《发展汉语-初级综合2》
- 2025年长春市轨道交通集团有限公司校园招聘(693人)笔试参考题库附带答案详解析版
- 建立健全各项管理制度
- 定期体检健康管理制度
- 病媒生物试题及答案
- T/CHC 1001-2019植物源高有机硒食品原料
- 农村果园承包合同范本
评论
0/150
提交评论