四川省邛崃市文昌中学校2022-2023学年数学高二第二学期期末教学质量检测模拟试题含解析_第1页
四川省邛崃市文昌中学校2022-2023学年数学高二第二学期期末教学质量检测模拟试题含解析_第2页
四川省邛崃市文昌中学校2022-2023学年数学高二第二学期期末教学质量检测模拟试题含解析_第3页
四川省邛崃市文昌中学校2022-2023学年数学高二第二学期期末教学质量检测模拟试题含解析_第4页
四川省邛崃市文昌中学校2022-2023学年数学高二第二学期期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在含有3件次品的10件产品中,任取2件,恰好取到1件次品的概率为A. B. C. D.2.将一枚质地均匀的硬币抛掷四次,设为正面向上的次数,则等于()A. B. C. D.3.若不等式对一切恒成立,则的取值范围是()A. B.C. D.4.设两个正态分布N(μ1,)(σ1>0)和N(μ2,)(σ2>0)的密度函数图象如图所示,则有()A.μ1<μ2,σ1<σ2B.μ1<μ2,σ1>σ2C.μ1>μ2,σ1<σ2D.μ1>μ2,σ1>σ25.如下图,在同一直角坐标系中表示直线y=ax与y=x+a,正确的是()A. B. C. D.6.已知函数在处取极值10,则()A.4或 B.4或 C.4 D.7.甲乙等人参加米接力赛,在甲不跑第一棒的条件下,乙不跑第二棒的概率是()A. B. C. D.8.将三枚骰子各掷一次,设事件为“三个点数都不相同”,事件为“至少出现一个6点”,则概率的值为()A. B. C. D.9.若,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件10.4名同学报名参加两个课外活动小组,每名同学限报其中的一个小组,则不同的报名方法共有()A.4种 B.16种 C.64种 D.256种11.函数的图象过原点且它的导函数的图象是如图所示的一条直线,则的图象的顶点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.若复数满足,则在复数平面上对应的点()A.关于轴对称 B.关于轴对称C.关于原点对称 D.关于直线对称二、填空题:本题共4小题,每小题5分,共20分。13.设空间向量,,且,则__________.14.某人进行射击训练,射击一次命中靶心的概率是0.9,各次射击相互独立,他连续射击3次,则“第一次没有命中靶心后两次命中靶心”的概率是______.15.要设计一个容积为的下端为圆柱形、上端为半球形的密闭储油罐,已知圆柱侧面的单位面积造价是下底面积的单位面积造价的一半,而顶部半球面的单位面积造价又是圆柱侧面的单位面积造价的一半,储油罐的下部圆柱的底面半径_______时,造价最低.16.函数的极值点为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,底面是直角梯形,且,,,,,,.(1)证明:平面;(2)求四棱锥的体积.18.(12分)在中,,,的对边分别为,,,若,(1)求的大小;(2)若,,求,的值.19.(12分)已知函数,为自然对数的底数.(1)求曲线在处的切线方程;(2)求函数的单调区间与极值.20.(12分)设正整数,集合,是集合P的3个非空子集,记为所有满足:的有序集合对(A,B,C)的个数.(1)求;(2)求.21.(12分)函数(为实数).(1)若,求证:函数在上是增函数;(2)求函数在上的最小值及相应的的值;(3)若存在,使得成立,求实数的取值范围.22.(10分)在一次数学测验后,班级学委对选答题的选题情况进行统计,如下表:几何证明选讲极坐标与参数方程不等式选讲合计男同学124622女同学081220合计12121842(1)在统计结果中,如果把几何证明选讲和极坐标与参数方程称为“几何类”,把不等式选讲称为“代数类”,我们可以得到如下2×2列联表.几何类代数类合计男同学16622女同学81220合计241842能否认为选做“几何类”或“代数类”与性别有关,若有关,你有多大的把握?(2)在原始统计结果中,如果不考虑性别因素,按分层抽样的方法从选做不同选答题的同学中随机选出7名同学进行座谈.已知这名学委和2名数学课代表都在选做“不等式选讲”的同学中.①求在这名学委被选中的条件下,2名数学课代表也被选中的概率;②记抽取到数学课代表的人数为,求的分布列及数学期望.下面临界值表仅供参考:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】分析:先求出基本事件的总数,再求出恰好取到1件次品包含的基本事件个数,由此即可求出.详解:含有3件次品的10件产品中,任取2件,基本事件的总数,恰好取到1件次品包含的基本事件个数,恰好取到1件次品的概率.故选:A.点睛:本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.2、C【解析】分析:先确定随机变量得取法,再根据独立重复试验求概率.详解:因为所以选C.点睛:次独立重复试验事件A恰好发生次得概率为.其中为1次试验种A发生得概率.3、C【解析】

本题是通过x的取值范围推导出a的取值范围,可先将a与x分别放于等式的两边,在通过x的取值范围的出a的取值范围。【详解】,因为所以所以,解得【点睛】本题主要考察未知字母的转化,可以先将需要求解的未知数和题目已给出未知数区分开来,再进行求解。4、A【解析】由密度函数的性质知对称轴表示期望,图象胖瘦决定方差,越瘦方差越小,越胖方差越大,所以μ1<μ2,σ1<σ2.故选A.考点:正态分布.5、A【解析】

由题意逐一考查所给的函数图像是否符合题意即可.【详解】逐一考查所给的函数图像:对于选项A,过坐标原点,则,直线在轴的截距应该小于零,题中图像符合题意;对于选项C,过坐标原点,则,直线在轴的截距应该大于零,题中图像不合题意;过坐标原点,直线的倾斜角为锐角,题中BD选项中图像不合题意;本题选择A选项.【点睛】本题主要考查分类讨论的数学思想,一次函数的性质等知识,意在考查学生的转化能力和计算求解能力.6、C【解析】分析:根据函数的极值点和极值得到关于的方程组,解方程组并进行验证可得所求.详解:∵,∴.由题意得,即,解得或.当时,,故函数单调递增,无极值.不符合题意.∴.故选C.点睛:(1)导函数的零点并不一定就是函数的极值点,所以在求出导函数的零点后一定要注意分析这个零点是不是函数的极值点.(2)对于可导函数f(x),f′(x0)=0是函数f(x)在x=x0处有极值的必要不充分条件,因此在根据函数的极值点或极值求得参数的值后需要进行验证,舍掉不符合题意的值.7、D【解析】由题得甲不跑第一棒的总的基本事件有个,甲不跑第一棒,乙不跑第二棒的基本事件有,由古典概型的概率公式得在甲不跑第一棒的条件下,乙不跑第二棒的概率是.故选D.8、A【解析】考点:条件概率与独立事件.分析:本题要求条件概率,根据要求的结果等于P(AB)÷P(B),需要先求出AB同时发生的概率,除以B发生的概率,根据等可能事件的概率公式做出要用的概率.代入算式得到结果.解:∵P(A|B)=P(AB)÷P(B),P(AB)==P(B)=1-P()=1-=1-=∴P(A/B)=P(AB)÷P(B)==故选A.9、A【解析】

本题根据基本不等式,结合选项,判断得出充分性成立,利用“特殊值法”,通过特取的值,推出矛盾,确定必要性不成立.题目有一定难度,注重重要知识、基础知识、逻辑推理能力的考查.【详解】当时,,则当时,有,解得,充分性成立;当时,满足,但此时,必要性不成立,综上所述,“”是“”的充分不必要条件.【点睛】易出现的错误有,一是基本不等式掌握不熟,导致判断失误;二是不能灵活的应用“赋值法”,通过特取的值,从假设情况下推出合理结果或矛盾结果.10、B【解析】根据题意,每个同学可以在两个课外活动小组中任选1个,即有2种选法,则4名同学一共有种选法;故选B.11、A【解析】

设,则,由图可知,从而可得顶点在第一象限.【详解】因为函数的图象过原点,所以可设,,由图可知,,则函数的顶点在第一象限,故选A.【点睛】本题主要考查导数公式的应用,考查了直线与二次函数的图象与性质,属于中档题.12、A【解析】

由题意可得z1,z2的实部相等,虚部互为相反数,故z1,z2在复数平面上对应的点Z1,Z2的关系即可得解.【详解】复数满足,可得z1,z2的实部相等,虚部互为相反数,故z1,z2在复数平面上对应的点关于轴对称,故选A.【点睛】本题主要考查共轭复数的定义,复数与复平面内对应点间的关系,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、-2.【解析】分析:,利用向量共线定理即可得出结论详解:,,且即即m4,n2∴点晴:本题主要考察空间向量的平行,注意熟记平面向量平行垂直的计算,空间向量的平行垂直的计算14、0.081.【解析】分析:根据题意三次射击互相独立,故概率为:详解:射击一次命中靶心的概率是0.9,各次射击相互独立,第一次没有命中靶心后两次命中靶心的概率为:故答案为:0.081.点睛:这个题目考查了互相独立事件的概率的计算,当A,B事件互相独立时,.15、.【解析】

根据造价关系,得到总造价,再利用导数求得的最大值.【详解】设圆柱的高为,圆柱底面单位面积造价为,总造价为,因为储油罐容积为,所以,整理得:,所以,令,则,当得:,当得,所以当时,取最大值,即取得最大值.【点睛】本题考查导数解决实际问题,考查运算求解能力和建模能力,求解时要把相关的量设出,并利用函数与方程思想解决问题.16、【解析】

求出的导数,令,根据单调区间,可得所求极值点;【详解】令,得则函数在上单调递减,在上单调递增,则函数在处取得极小值,是其极小值点.即答案为3.【点睛】本题考查导数的运用:求单调区间和极值点,考查化简整理的运算能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)【解析】

(1)先证明,,再证明平面;(2)连接,求出AC,CB的长,再求四棱锥的体积.【详解】(1)证明:因为,,所以,即,同理可得,因为,所以平面.(2)解:连接,,,..【点睛】本题主要考查线面垂直关系的证明,考查锥体的体积是计算,意在考查学生对这些知识的理解掌握水平,属于基础题.18、(1)(2),或,.【解析】分析:(1)利用正弦定理把化成,即为,从而解得.(2)利用余弦定理及构建关于的方程,解出.详解:(1)由已知得,∴.∵,∴.∵,所以,∴,所以(2)∵,即,∴∴,又∵,∴,或,点睛:三角形中共有七个几何量(三边三角以及外接圆的半径),一般地,知道其中的三个量(除三个角外),可以求得其余的四个量.(1)如果知道三边或两边及其夹角,用余弦定理;(2)如果知道两边即一边所对的角,用正弦定理(也可以用余弦定理求第三条边);(3)如果知道两角及一边,用正弦定理.19、(1);(2)的单调递减区间为,单调递增区间为;极小值为,无极大值.【解析】

首先求得;(1)将代入求得且点坐标,根据导数的几何意义可求得切线斜率,利用点斜式可得切线方程;(2)令导函数等于零,求得,从而可得导函数在不同区间内的符号,进而得到单调区间;根据极值的定义可求得极值.【详解】由得:(1)在处切线斜率:,又所求切线方程为:,即:(2)令,解得:当时,;当时,的单调递减区间为:;单调递增区间为:的极小值为:;无极大值【点睛】本题考查利用导数求解曲线在某一点处的切线方程、求解导数的单调区间和极值的问题,考查学生对于导数基础应用的掌握.20、(1),(2)【解析】

(1)通过分析,,分别讨论可得到;(2)通过分析A共有种不同情形,集合B共有种不同情形,集合C随集合B确定而唯一确定,于是可得通项公式.【详解】当时,集合,因为是集合P的3个非空子集,根据题意,所以当时,或;当时,或;当时,或.所以.(2)当A中的元素个数为时,集合A共有种不同情形,集合B共有种不同情形,集合C随集合B确定而唯一确定,所以.【点睛】本题主要考查数列,集合,排列组合的综合运用,意在考查学生的划归能力,分析能力,逻辑推理能力,难度较大.21、(1)函数在上是增函数;(2)见解析;(3).【解析】试题分析:(1)当时,在(0,+∞)上恒成立,故函数在(1,+∞)上是增函数;(2)求导),当x∈[1,e]时,.分①,②,③,三种情况得到函数f(x)在[1,e]上是单调性,进而得到[f(x)]min;(3)由题意可化简得到,令,利用导数判断其单调性求出最小值为.试题解析:(1)当时,,其定义域为,,当时,恒成立,故函数在上是增函数.(2),当时,,①若,在上有(仅当,时,),故函数在上是增函数,此时;②若,由,得,当时,有,此时在区间上是减函数;当时,有,此时,在区间上是增函数,故;③若,在上有(仅当,时,),故函数在上是减函数,此时综上可知,当时,的最小值为1,相应的的值为1;当时,的最小值为,相应的值为;当时,的最小值为,相应的的值为.(3)不等式可化为,因为,所以,且等号不能同时取,所以,即,所以,令,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论