四川省仁寿县青神中学校2022-2023学年高二数学第二学期期末监测试题含解析_第1页
四川省仁寿县青神中学校2022-2023学年高二数学第二学期期末监测试题含解析_第2页
四川省仁寿县青神中学校2022-2023学年高二数学第二学期期末监测试题含解析_第3页
四川省仁寿县青神中学校2022-2023学年高二数学第二学期期末监测试题含解析_第4页
四川省仁寿县青神中学校2022-2023学年高二数学第二学期期末监测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知椭圆的左焦点为A. B. C. D.2.在曲线的图象上取一点及附近一点,则为()A. B.C. D.3.若函数满足:对任意的,都有,则函数可能是A. B. C. D.4.设复数满足,则()A. B.C. D.25.为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是()A.简单随机抽样 B.按性别分层抽样C.按学段分层抽样 D.系统抽样6.定积分的值为()A. B. C. D.7.正数满足,则()A. B. C. D.8.下列各对函数中,图象完全相同的是()A.与 B.与C.与 D.与9.已知圆,在圆中任取一点,则点的横坐标小于的概率为()A. B. C. D.以上都不对10.在上单调递增,则实数的取值范围为()A. B.C. D.11.圆柱形容器内盛有高度为6cm的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球,如图所示.则球的半径是()A.1cm B.2cmC.3cm D.4cm12.端午节吃粽子是我国的传统习俗,设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同,从中任意选取3个,则三种粽子各取到1个的概率是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.一名同学想要报考某大学,他必须从该校的7个不同专业中选出5个,并按第一志愿、第二志愿、…、第五志愿的顺序填写志愿表,若专业不能作为第一、第二志愿,则他共有____种不同的填法。(用数字作答)14.定积分的值等于________.15.在上随机地取一个数,则事件“直线与圆相交”发生的概率为__________.16.记(为正奇数),则除以88的余数为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)张华同学上学途中必须经过四个交通岗,其中在岗遇到红灯的概率均为,在岗遇到红灯的概率均为.假设他在4个交通岗遇到红灯的事件是相互独立的,X表示他遇到红灯的次数.(1)若,就会迟到,求张华不迟到的概率;(2)求EX.18.(12分)已知函数,不等式的解集是.(1)求a的值;(2)若关于x的不等式的解集非空,求实数k的取值范围.19.(12分)食品安全问题越来越引起人们的重视,农药、化肥的滥用对人民群众的健康带来一定的危害,为了给消费者带来放心的蔬菜,某农村合作社每年投入200万元,搭建了甲、乙两个无公害蔬菜大棚,每个大棚至少要投入20万元,其中甲大棚种西红柿,乙大棚种黄瓜,根据以往的种菜经验,发现种西红柿的年收益P、种黄瓜的年收益Q与投入a(单位:万元)满足P=80++120.设甲大棚的投入为x(单位:万元),每年两个大棚的总收益为f(x)(单位:万元).(1)求f(50)的值;(2)试问如何安排甲、乙两个大棚的投入,才能使总收益f(x)最大?20.(12分)几个月前,成都街头开始兴起“mobike”、“ofo”等共享单车,这样的共享单车为很多市民解决了最后一公里的出行难题.然而,这种模式也遇到了一些让人尴尬的问题,比如乱停乱放,或将共享单车占为“私有”等.为此,某机构就是否支持发展共享单车随机调查了50人,他们年龄的分布及支持发展共享单车的人数统计如下表:年龄受访人数56159105支持发展共享单车人数4512973(Ⅰ)由以上统计数据填写下面的列联表,并判断能否在犯错误的概率不超过0.1的前提下,认为年龄与是否支持发展共享单车有关系;年龄低于35岁年龄不低于35岁合计支持不支持合计(Ⅱ)若对年龄在,的被调查人中各随机选取两人进行调查,记选中的4人中支持发展共享单车的人数为,求随机变量的分布列及数学期望.参考数据:0.500.400.250.150.100.050.0250.0100.0050.0010.4550.7081.3232.0722.7063.8415.0246.6357.87910.828参考公式:,其中.21.(12分)如图,在三棱锥中,底面,且,,,、分别是、的中点.(1)求证:平面平面;(2)求二面角的平面角的大小.22.(10分)设数列的前项和为,已知.(1)求数列的通项公式;(2)令,求数列的前项和.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

代入得,解得,由此可得三角形ABF为直角三角形.OF=5,即c=5.由椭圆为中心对称图形可知当右焦点为时,,【考点定位】本题考查椭圆定义,解三角形相关知识以及椭圆的几何性质.2、C【解析】

求得的值,再除以,由此求得表达式的值.【详解】因为,所以.故选C.【点睛】本小题主要考查导数的定义,考查平均变化率的计算,属于基础题.3、A【解析】

由判断;由判断;由判断判断;由判断.【详解】对于,,对.对于,,不对.对于,,不对.对于,,不对,故选A.【点睛】本题考查了函数的解析式的性质以及指数的运算、对数的运算、两角和的正弦公式,意在考查对基本运算与基本公式的掌握与应用,以及综合应用所学知识解答问题的能,属于基础题.4、A【解析】由,得,故选A.5、C【解析】试题分析:符合分层抽样法的定义,故选C.考点:分层抽样.6、C【解析】

根据微积分基本定理,可知求解,即可.【详解】故选:C【点睛】本题考查微积分基本定理,属于较易题.7、C【解析】给定特殊值,不妨设,则:.本题选择C选项.8、C【解析】

先判断两个函数的定义域是否是同一个集合,再判断两个函数的解析式是否可以化为一致.【详解】解:对于A、∵的定义域为,的定义域为.两个函数的对应法则不相同,∴不是同一个函数.对于B、∵的定义域,的定义域均为.∴两个函数不是同一个函数.对于C、∵的定义域为且,的定义域为且.对应法则相同,∴两个函数是同一个函数.对于D、的定义域是,的定义域是,定义域不相同,∴不是同一个函数.故选C.【点睛】本题考查两个函数解析式是否表示同一个函数,需要两个条件:①两个函数的定义域是同一个集合;②两个函数的解析式可以化为一致.这两个条件缺一不可,必须同时满足.9、C【解析】分析:画出满足条件的图像,计算图形中圆内横坐标小于的面积,除以圆的面积。详解:由图可知,点的横坐标小于的概率为,故选C点睛:几何概型计算面积比值。10、D【解析】

利用函数在连续可导且单调递增,可得导函数在大于等于0恒成立即可得到的取值范围.【详解】因为函数在连续可导且单调递增,所以在恒成立,分离参数得恒成立,即,故选D.【点睛】本题考查函数在区间内单调递增等价于在该区间内恒成立.11、C【解析】

设出球的半径,根据题意得三个球的体积和水的体积之和,等于柱体的体积,结合体积公式求解即可.【详解】设球半径为,则由,可得,解得,故选C.【点睛】本题主要考查了几何体的体积公式的应用,考查学生空间想象能力以及计算能力,是基础题.12、C【解析】试题分析:由题可先算出10个元素中取出3个的所有基本事件为;种情况;而三种粽子各取到1个有种情况,则可由古典概率得;考点:古典概率的算法.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据题意,分2步进行分析:①、由于A专业不能作为第一、第二志愿,需要在除A之外的6个专业中,任选2个,作为第一、二志愿,有种填法,②、第一二志愿填好后,在剩下的5个专业中任选3个,作为第三四五志愿,有种填法,则该学生有30×60=1800种不同的填法;故答案为:1800.点睛:(1)解排列组合问题要遵循两个原则:①按元素(或位置)的性质进行分类;②按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).(2)不同元素的分配问题,往往是先分组再分配.在分组时,通常有三种类型:①不均匀分组;②均匀分组;③部分均匀分组.注意各种分组类型中,不同分组方法的求解.14、ln1【解析】

直接根据定积分的计算法则计算即可.【详解】,故答案为:ln1.【点睛】本题考查了定积分的计算,关键是求出原函数,属于基础题.15、【解析】试题分析:直线y=kx与圆相交,需要满足圆心到直线的距离小于半径,即,解得,而,所以所求概率P=.【考点】直线与圆位置关系;几何概型【名师点睛】本题是高考常考知识内容,考查几何概型概率的计算.本题综合性较强,具有“无图考图”的显著特点,涉及点到直线距离的计算.本题能较好地考查考生分析问题、解决问题的能力及基本计算能力等.16、87【解析】

由组合数的性质知:,由此能求出结果.【详解】解:由组合数的性质知:则除以88的余数为.故答案为:.【点睛】本题考查余数的求法,是中档题,解题时要认真审题,注意组合数性质及二项式定理的合理运用.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】

(1);.故张华不迟到的概率为.(2)的分布列为

0

1

2

3

4

.18、(1)2;(2).【解析】

(1)根据绝对值不等式的解法,结合不等式的解集建立方程关系进行求解即可.(2)利用解集非空转化为存在使得成立,利用绝对值三角不等式找到的最小值,即可得解.【详解】解:(1)由,得,即,当时,,因为不等式的解集是,所以,解得,当时,,因为不等式的解集是,所以,该式无解,所以.(2)因为,所以要使存在实数解,只需,即实数的取值范围是.【点睛】本题主要考查绝对值三角不等式的应用,利用解集非空转化为有解问题是解决本题的关键,属于基础题.19、(1);(2)甲大棚万元,乙大棚万元时,总收益最大,且最大收益为万元.【解析】试题分析:(1)当甲大棚投入万元,则乙大棚投入万元,此时直接计算即可;(2)列出总收益的函数式得,令,换元将函数转换为关于的二次函数,由二次函数知识可求其最大值及相应的值.试题解析:(1)∵甲大棚投入50万元,则乙大棚投入150万元,∴(2),依题得,即,故.令,则,当时,即时,,∴甲大棚投入128万元,乙大棚投入72万元时,总收益最大,且最大收益为282万元.考点:1.函数建模;2.二次函数.20、(Ⅰ)见解析;(Ⅱ)见解析.【解析】试题分析:(1)由题意可知a=30,b=10,c=5,d=5,代入:。(2)年龄在的5个受访人中,有1人支持发展共享单车;年龄在的6个受访人中,有5人支持发展共享单车.随机变量的所有可能取值为2,3,1.所以,,.试题解析:(Ⅰ)根据所给数据得到如下列联表:年龄低于35岁年龄不低于35岁合计支持301010不支持5510合计351550根据列联表中的数据,得到的观测值为.∴不能在犯错误的概率不超过0.1的前提下,认为年龄与是否支持发展共享单车有关系.(Ⅱ)由题意,年龄在的5个受访人中,有1人支持发展共享单车;年龄在的6个受访人中,有5人支持发展共享单车.∴随机变量的所有可能取值为2,3,1.∵,,,∴随机变量的分布列为231∴随机变量的数学期望.21、(Ⅰ)证明过程详见解析;(Ⅱ).【解析】

(Ⅰ)已知SB、AB、BC两两互相垂直,故可建立空间直角坐标系如下图.根据线段长度可求出相应点的坐标,从而可推出,则,所以平面平面BCD.(Ⅱ)求出两个平面的法向量,利用法向量夹角与二面角平面角的关系求出平面角的大小.【详解】(Ⅰ).又因,所以建立如上图所示的坐标系.所以A(2,0,0),,,D(1,0,1),,S(0,0,2)易得,,,又,又又因,所以平

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论