




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,则方程的实根个数为,且,则()A. B. C. D.2.定义在上的函数,满足为的导函数,且,若,且,则有()A. B.C. D.不确定3.已知函数的图象关于点对称,则在上的值域为()A. B. C. D.4.由2,3,5,0组成的没有重复数字的四位偶数的个数是()A.12 B.10 C.8 D.145.若两个正实数满足,且恒成立,则实数的取值范围是()A. B. C. D.6.甲、乙、丙三位同学独立的解决同一个间题,已知三位同学能够正确解决这个问题的概率分别为、、,则有人能够解决这个问题的概率为()A. B. C. D.7.阅读程序框图,运行相应的程序,则输出的的值为()A.72 B.90 C.101 D.1108.若(3x-1x)A.-5B.5C.-405D.4059.方程表示焦点在轴上的椭圆,则的取值范围是()A. B. C. D.10.函数的定义域为()A. B. C. D.11.已知是定义域为的奇函数,满足.若,则()A. B. C. D.12.与曲线相切于处的切线方程是(其中是自然对数的底)()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设实数x,y满足,则的最小值为___________.14.的展开式中,的系数为__________(用数字作答).15.用1,2,3,4,5,6组成没有重复数字,且至少有一个数字是奇数的三位偶数,这样的三位数一共有______个.16.已知平行六面体中,,,,,,则的长为________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)近年来,郑州经济快速发展,跻身新一线城市行列,备受全国瞩目.无论是市内的井字形快速交通网,还是辐射全国的米字形高铁路网,郑州的交通优势在同级别的城市内无能出其右.为了调查郑州市民对出行的满意程度,研究人员随机抽取了1000名市民进行调查,并将满意程度以分数的形式统计成如下的频率分布直方图,其中.(1)求的值;(2)若按照分层抽样从[50,60),[60,70)中随机抽取8人,再从这8人中随机抽取2人,求至少有1人的分数在[50,60)的概率.18.(12分)在四棱锥中,侧棱底面,底面是直角梯形,,,,,是棱上的一点(不与、点重合).(1)若平面,求的值;(2)求二面角的余弦值.19.(12分)已知函数f(x)=x+,且此函数的图象过点(1,5).(1)求实数m的值并判断f(x)的奇偶性;(2)判断函数f(x)在[2,+∞)上的单调性,证明你的结论.20.(12分)函数.(Ⅰ)若时,求函数的单调区间;(Ⅱ)设,若函数在上有两个零点,求实数的取值范围.21.(12分)已知函数(且,e为自然对数的底数.)(1)当时,求函数在处的切线方程;(2)若函数只有一个零点,求a的值.22.(10分)已知圆C的圆心在x轴上,且经过两点,.(1)求圆C的方程;(2)若点P在圆C上,求点P到直线的距离的最小值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
由与的图象交点个数可确定;利用二项式定理可分别求得和的展开式中项的系数,加和得到结果.【详解】当时,与的图象如下图所示:可知与有且仅有个交点,即的根的个数为的展开式通项为:当,即时,展开式的项为:又本题正确选项:【点睛】本题考查利用二项式定理求解指定项的系数的问题,涉及到函数交点个数的求解;解题关键是能够将二项式配凑为展开项的形式,从而分别求解对应的系数,考查学生对于二项式定理的综合应用能力.2、A【解析】
函数满足,可得.由,易知,当时,,单调递减.由,则.当,则.当,则,,,即.故选A.3、D【解析】由题意得,函数的图象关于点对称,则,即,解得,所以,则,令,解得或,当,则,函数单调递减,当,则,函数单调递增,所以,,所以函数的值域为,故选D.点睛:本题考查了函数的基本性质的应用,其中解答中涉及到利用导数研究函数的单调性,利用导数研究函数的最值,其中解答中根据函数的图象关于点对称,列出方程组,求的得值是解得关键,着重考查了学生分析问题和解答问题的能力.4、B【解析】
根据个位是和分成两种情况进行分类讨论,由此计算出所有可能的没有重复数字的四位偶数的个数.【详解】当0在个位数上时,有个;当2在个位数上时,首位从5,3中选1,有两种选择,剩余两个数在中间排列有2种方式,所以有个所以共有10个.故选:B【点睛】本小题主要考查简单排列组合的计算,属于基础题.5、D【解析】
将代数式与相乘,展开后利用基本不等式求出的最小值,然后解不等式,可得出实数的取值范围.【详解】由基本不等式得,当且仅当,由于,,即当时,等号成立,所以,的最小值为,由题意可得,即,解得,因此,实数的取值范围是,故选D.【点睛】本题考查不等式恒成立问题,考查利用基本不等式求最值,对于不等式成立的问题,需要结合量词来决定所选择的最值,考查计算能力,属于中等题.6、B【解析】试题分析:此题没有被解答的概率为,故能够将此题解答出的概率为.故选D.考点:相互独立事件的概率乘法公式.点评:本题考查相互独立事件的概率乘法公式、互斥事件的概率和公式、对立事件的概率公式;注意正难则反的原则,属于中档题.7、B【解析】输入参数第一次循环,,满足,继续循环第二次循环,,满足,继续循环第三次循环,,满足,继续循环第四次循环,,满足,继续循环第五次循环,,满足,继续循环第六次循环,,满足,继续循环第七次循环,,满足,继续循环第八次循环,,满足,继续循环第九次循环,,不满足,跳出循环,输出故选B点睛:此类问题的一般解法是严格按照程序框图设计的计算步骤逐步计算,逐次判断是否满足判断框内的条件,决定循环是否结束.要注意初始值的变化,分清计数变量与累加(乘)变量,掌握循环体等关键环节.8、C【解析】由题设可得2n=32⇒n=5,则通项公式Tr+1=C5r9、A【解析】
将椭圆方程化为标准方程,根据题中条件列出关于的不等式,解出该不等式可得出实数的取值范围.【详解】椭圆的标准方程为,由于该方程表示焦点在轴上的椭圆,则,解得,因此,实数的取值范围是,故选A.【点睛】本题考查椭圆的标准方程,考查根据方程判断出焦点的位置,解题时要将椭圆方程化为标准形式,结合条件列出不等式进行求解,考查运算求解能力,属于中等题.10、D【解析】
分析每个根号下的范围,取交集后得到定义域.【详解】因为,所以,则定义域为.故选:D.【点睛】本题考查函数含根号的函数定义问题,难度较易.注意根号下大于等于零即可.11、C【解析】分析:先根据奇函数性质以及对称性确定函数周期,再根据周期以及对应函数值求结果.详解:因为是定义域为的奇函数,且,所以,因此,因为,所以,,从而,选C.点睛:函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.12、B【解析】
求出导函数,把代入导函数,可求出切线的斜率,根据的坐标和直线的点斜式方程可得切线方程.【详解】由可得,切线斜率,故切线方程是,即.故选B.【点睛】本题主要考查利用导数求曲线切线方程,属于简单题.求曲线切线方程的一般步骤是:(1)求出在处的导数,即在点出的切线斜率(当曲线在处的切线与轴平行时,在处导数不存在,切线方程为);(2)由点斜式求得切线方程.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
由题意画出可行域,令,转化目标函数为,数形结合即可得解.【详解】由题意画出可行域,如图,令,则,数形结合可知,当直线过点A时,取最小值,由可得点,所以.故答案为:.【点睛】本题考查了简单的线性规划,属于基础题.14、【解析】.15、54【解析】
运用排列组合,先求出偶数的可能一共有多少个,然后减去三个数字都是偶数的情况【详解】当个位是偶数的时候共有种可能三个数字都是偶数时,有种可能则满足题意的三位数共有种故答案为【点睛】本题考查了排列组合的数字的排序问题,只要按照题目要求进行分类求出一共的情况,然后减去不符合情况即可得出结果16、【解析】
可得,由数量积的运算可得,开方可得;【详解】如图所示:,故故的长等于.故答案为:【点睛】本题考查空间向量模的计算,选定为基底是解决问题的关键,属中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】
根据频率分布直方图的特点:可列的式子:,求得,根据图,可知a=4b,继而求得a,b,先利用分层抽样得方法,确定[50,60),[60,70)中分别抽取的人数,然后利用古典概型,求得概率【详解】(1)依题意得,所以,又a=4b,所以a=0.024,b=0.1.(2)依题意,知分数在[50,60)的市民抽取了2人,记为a,b,分数在[60,70)的市民抽取了6人,记为1,2,3,4,5,6,所以从这8人中随机抽取2人所有的情况为:(a,b),(a,1),(a,2),(a,3),(a,4),(a,5),(a,6),(b,1),(b,2),(b,3),(b,4),(b,5),(b,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)共28种,其中满足条件的为(a,b),(a,1),(a,2),(a,3),(a,4),(a,5),(a,6),(b,1),(b,2),(b,3),(b,4),(b,5),(b,6)共13种,设“至少有1人的分数在[50,60)”的事件为A,则P(A)=.【点睛】本题考查频率分布直方图以及古典概型18、(1)(2)【解析】
(1)由平面可得,从而得到.(2)以为坐标原点,的方向为轴,轴,轴正方向建立空间直角坐标系,求出平面的一个法向量和平面的一个法向量后可得二面角的余弦值.【详解】(1)证明:因为平面,平面,平面平面,所以,所以,因为,所以.所以.(2)解:以为坐标原点,的方向为轴,轴,轴正方向建立如图所示的空间直角坐标系,则点.则.设平面的一个法向量为,则,即,得.令,得;易知平面的一个法向量为,设二面角的大小为,则.故二面角的余弦值为.【点睛】线线平行的证明可利用线面平行或面面平行来证明,空间中的角的计算,可以建立空间直角坐标系把角的计算归结为向量的夹角的计算,也可以构建空间角,把角的计算归结平面图形中的角的计算.19、(1)m=1,奇函数;(2)f(x)在[2,+∞)上单调递增,证明见解析.【解析】
试题分析:(1)函数图象过点(1,5)将此点代入函数关系式求出m的值即可,因为函数定义域关于原点对称,需要判断函数是否满足关系式或者.满足前者为偶函数,满足后者为奇函数,否则不具有奇偶性.此题也可以将看做与两个函数的和,由的奇偶性判断出的奇偶性.(2)利用函数单调性的定义式:区间上的时,的正负来确定函数在区间上的单调性.试题解析:(1)(1)∵f(x)过点(1,5),∴1+m=5⇒m=1.对于f(x)=x+,∵x≠2,∴f(x)的定义域为(-∞,2)∪(2,+∞),关于原点对称.∴f(-x)=-x+=-f(x).∴f(x)为奇函数.另解:,,定义域均与定义域相同,因为为奇函数,因此可以得出也为奇函数.(2)证明:设x1,x2∈[2,+∞)且x1<x2,则f(x1)-f(x2)=x1+-x2-=(x1-x2)+=.∵x1,x2∈[2,+∞)且x1<x2,∴x1-x2<2,x1x2>1,x1x2>2.∴f(x1)-f(x2)<2.∴f(x)在[2,+∞)上单调递增.考点:1、求函数表达式;2、证明函数的奇偶性;3、证明函数的单调性.20、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)当时,,解不等式则单调区间可求;(Ⅱ)在上有两个零点,等价于在上有两解,分离参数,构造函数,求导求其最值即可求解【详解】(Ⅰ)当时,的定义域为,当,时,,在和上单调递增.当时,,在上单调递减.故的单调增区间为,;单调减区间为(Ⅱ)因为在上有两个零点,等价于在上有两解,令则令则在上单调递增,又在上有,在有时,,时,在上单调递减,在上单调递增.,,由有两解及可知.【点睛】本题考查函数的单调区间及函数最值,不等式恒成立,分离参数法
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 国际家庭日演讲稿(14篇)
- 2025湖北咸宁市通城城市发展建设投资(集团)有限公司第一期招聘模拟试卷及答案详解(考点梳理)
- 2025广东东菀市社卫中心招聘纳入岗位管理编制外7人考前自测高频考点模拟试题及参考答案详解
- 2025年合肥巢湖学院招聘专职辅导员6人考前自测高频考点模拟试题附答案详解(考试直接用)
- 2025年专门用途灯具:工艺装饰灯具合作协议书
- 2025安徽淮南市招聘村级后备干部81人模拟试卷及答案详解1套
- 单位财务工作总结(14篇)
- 2025年航空辅助动力系统项目建议书
- 2025呼和浩特市玉泉区消防救援大队招聘4名政府专职消防员考前自测高频考点模拟试题附答案详解(模拟题)
- 2025年山东省慢性病医院(山东省康复中心)招聘工作人员(非编)模拟试卷及一套参考答案详解
- 山东省威海市荣成市实验中学(五四制)2024-2025学年八年级上学期期末考试数学试题(含部分答案)
- 2025年云南事业单位a类真题及答案
- 《非甾体抗炎药物》课件
- 烟道供货及安装合同模板
- 《智能制造概论》项目三-智能制造关键技术
- 美容皮肤临床技术操作规范方案
- 2025年机关意识形态工作要点
- 交通安全设施培训课件
- (高清版)DB36∕T 1324-2020 公路建设项目档案管理规范
- 《凯勒战略品牌》课件
- 手术室的器械护士
评论
0/150
提交评论