




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列选项叙述错误的是()A.命题“若,则”的逆否命题是“若,则”B.若命题,则C.若为真命题,则,均为真命题D.若命题为真命题,则的取值范围为2.在ΔABC中,cosA=sinB=12A.3 B.23 C.3 D.3.已知随机变量,若,则,分别为()A.和 B.和 C.和 D.和4.下列命题中正确的是()A.的最小值是2B.的最小值是2C.的最大值是D.的最小值是5.已知函数,则()A.是偶函数,且在R上是增函数 B.是奇函数,且在R上是增函数C.是偶函数,且在R上是减函数 D.是奇函数,且在R上是减函数6.曲线在点处的切线方程是()A. B.C. D.7.球的体积是,则此球的表面积是()A. B. C. D.8.已知为自然对数的底数,若对任意的,总存在唯一的,使得成立,则实数的取值范围是()A. B. C. D.9.()A. B. C.0 D.10.已知函数为内的奇函数,且当时,,记,则间的大小关系是()A. B.C. D.11.已知原命题:已知,若,则,则其逆命题、否命题、逆否命题和原命题这四个命题中真命题的个数为()A. B. C. D.12.设实数a=log23,b=A.a>b>c B.a>c>b C.b>a>c D.b>c>a二、填空题:本题共4小题,每小题5分,共20分。13.设,若不等式对任意实数恒成立,则取值集合是_______.14.不等式的解集是__________.15.已知一组数据1,3,2,5,4,那么这组数据的方差为____.16.在空间直角坐标系中,已知点M(1,0,1),N(-1,1,2),则线段MN的长度为____________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面四边形中,、分、所成的比为,即,则有:.(1)拓展到空间,写出空间四边形类似的命题,并加以证明;(2)在长方体中,,,,、分别为、的中点,利用上述(1)的结论求线段的长度;(3)在所有棱长均为平行六面体中,(为锐角定值),、分、所成的比为,求的长度.(用,,表示)18.(12分)某工厂的某车间共有位工人,其中的人爱好运动。经体检调查,这位工人的健康指数(百分制)如下茎叶图所示。体检评价标准指出:健康指数不低于者为“身体状况好”,健康指数低于者为“身体状况一般”。(1)根据以上资料完成下面的列联表,并判断有多大把握认为“身体状况好与爱好运动有关系”?身体状况好身体状况一般总计爱好运动不爱好运动总计(2)现将位工人的健康指数分为如下组:,,,,,其频率分布直方图如图所示。计算该车间中工人的健康指数的平均数,由茎叶图得到真实值记为,由频率分布直方图得到估计值记为,求与的误差值;(3)以该车间的样本数据来估计该厂的总体数据,若从该厂健康指数不低于者中任选人,设表示爱好运动的人数,求的数学期望。附:。19.(12分)《中华人民共和国道路交通安全法》第47条的相关规定:机动车行经人行横道时,应当减速慢行;遇行人正在通过人行横道,应当停车让行,俗称“礼让斑马线”,《中华人民共和国道路交通安全法》第90条规定:对不礼让行人的驾驶员处以扣3分,罚款50元的处罚.下表是某市一主干路口监控设备所抓拍的5个月内驾驶员不“礼让斑马线”行为统计数据:月份12345违章驾驶员人数1201051009085(1)请利用所给数据求违章人数少与月份x之间的回归直线方程;(2)预测该路口7月份的不“礼让斑马线”违章驾驶员人数;(3)交警从这5个月内通过该路口的驾驶员中随机抽查了50人,调查驾驶员不“礼让斑马线”行为与驾龄的关系,得到如下2×2列联表:不礼让斑马线礼让斑马线合计驾龄不超过1年22830驾龄1年以上81220合计302050能否据此判断有97.5%的把握认为“礼让斑马线”行为与驾龄有关?参考公式:,.(其中n=a+b+c+d)P(K2≥k)0.1500.1000.0500.0250.0100.0050.001k2.0722.7063.8415.0246.6357.87910.82820.(12分)已知椭圆:与抛物线有公共的焦点,且公共弦长为,(1)求,的值.(2)过的直线交于,两点,交于,两点,且,求.21.(12分)已知数列{an}和b(1)求an与b(2)记数列{anbn}的前n22.(10分)某保险公司拟推出某种意外伤害险,每位参保人交付元参保费,出险时可获得万元的赔付,已知一年中的出险率为,现有人参保.(1)求保险公司获利在(单位:万元)范围内的概率(结果保留小数点后三位);(2)求保险公司亏本的概率.(结果保留小数点后三位)附:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】分析:根据四种命题的关系进行判断A、B,根据或命题的真值表进行判断C,由全称命题为真的条件求D中参数的值.详解:命题“若,则”的逆否命题是“若,则”,A正确;若命题,则,B正确;若为真命题,则,只要有一个为真,C错误;若命题为真命题,则,,D正确.故选C.点睛:判断命题真假只能对每一个命题进行判断,直到选出需要的结论为止.命题考查四种命题的关系,考查含逻辑连接词的命题的真假以及全称命题为真时求参数的取值范围,掌握相应的概念是解题基础.2、B【解析】
通过cosA=sinB=1【详解】由于cosA=12,A∈(0,π),可知A=π3,而sinB=12,B=π【点睛】本题主要考查解三角形的综合应用,难度不大.3、C【解析】
利用二项分布的数学期望和方差公式求出和,然后利用期望和方差的性质可求出和的值.【详解】,,.,,由期望和方差的性质可得,.故选:C.【点睛】本题考查均值和方差的求法,是基础题,解题时要认真审题,注意二项分布的性质的合理运用.4、C【解析】因为A.的最小值是2,只有x>0成立。B.的最小值是2,取不到最小值。C.的最大值是,成立D.的最小值是,不成立。故选C5、D【解析】
根据题意,由函数的解析式可得f(﹣x)=2x﹣()x=﹣f(x),则函数f(x)为奇函数,由指数函数的性质可得y=()x在R上为减函数,y=2x在R上为增函数,则函数f(x)=()x﹣2x在R上为减函数,据此分析可得答案.【详解】根据题意,f(x)=()x﹣2x,有f(﹣x)=2x﹣()x=﹣f(x),则函数f(x)为奇函数,又由y=()x在R上为减函数,y=2x在R上为增函数,则函数f(x)=()x﹣2x在R上为减函数,故选:D.【点睛】本题考查函数的奇偶性与单调性的判断,关键是掌握函数奇偶性、单调性的判断方法,属于基础题.6、D【解析】
求出原函数的导函数,得到f′(0)=﹣2,再求出f(0),由直线方程的点斜式得答案.【详解】f′(x)=,∴f′(0)=﹣2,又f(0)=﹣1∴函数图象在点(0,f(0))处的切线方程是y+1=﹣2(x﹣0),即故选:D【点睛】本题考查了利用导数研究过曲线上某点处的切线方程,过曲线上某点的切线的斜率,就是函数在该点处的导数值,是中档题.7、B【解析】
先计算出球的半径,再计算表面积得到答案.【详解】设球的半径为R,则由已知得,解得,故球的表面积.故选:【点睛】本题考查了圆的体积和表面积的计算,意在考查学生的计算能力.8、B【解析】,,故函数在区间上递增,,,故函数在上递减.所以,解得,故选B.9、D【解析】
定积分的几何意义是圆的个圆的面积,计算可得结果.【详解】定积分的几何意义是圆的个圆的面积,∴,故选D.【点睛】本题考查定积分,利用定积分的几何意义是解决问题的关键,属基础题10、D【解析】
根据奇函数解得,设,求导计算单调性和奇偶性,根据性质判断大小得到答案.【详解】根据题意得,令.则为内的偶函数,当时,,所以在内单调递减又,故,选D.【点睛】本题考查了函数的奇偶性单调性,比较大小,构造函数是解题的关键.11、D【解析】
判断原命题的真假即可知逆否命题的真假,由原命题得出逆命题并判断真假,即可得否命题的真假。【详解】由题原命题:已知,若,则,为真命题,所以逆否命题也是真命题;逆命题为:已知,若,则,为真命题,所以否命题也是真命题。故选D.【点睛】本题考查四种命题之间的关系,解题的关键是掌握互为逆否的命题同真假,属于基础题。12、A【解析】分析:利用指数函数、对数函数的单调性及中间量比较大小.详解:∵a=log23>log22=1,0<b=1312<(1c=log132∴a>b>c.故选A.点睛:利用指数函数对数函数及幂函数的性质比较实数或式子的大小,一方面要比较两个实数或式子形式的异同,底数相同,考虑指数函数增减性,指数相同考虑幂函数的增减性,当都不相同时,考虑分析数或式子的大致范围,来进行比较大小,另一方面注意特殊值0,1的应用,有时候要借助其“桥梁”作用,来比较大小.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
将不等式转化为,分别在、、、的情况下讨论得到的最大值,从而可得;分别在、、的情况去绝对值得到不等式,解不等式求得结果.【详解】对任意实数恒成立等价于:①当时,②当时,③当时,④当时,综上可知:,即当时,,解得:当时,,无解当时,,解得:的取值集合为:本题正确结果;【点睛】本题考查绝对值不等式中的恒成立问题,关键是能够通过分类讨论的思想求得最值,从而将问题转化为绝对值不等式的求解,再利用分类讨论的思想解绝对值不等式即可得到结果.14、【解析】分析:把不等式化为同底的不等式,利用指数函数的单调性即可求解.详解:原不等式可以化为,所以,故或者,不等式的解集为,填.点睛:一般地,对于不等式,(1)如果,则原不等式等价于;(2)如果,则原不等式等价于.15、2;【解析】
先求这组数据的平均数,再代入方差公式,求方差.【详解】因为,方差.【点睛】本题考查平均数与方差公式的简单应用,考查基本的数据处理能力.16、【解析】
根据两点间距离公式计算.【详解】.故答案为.【点睛】本题考查空间两点间距离公式,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)命题同题干,证明见解析;(2);(3)【解析】
(1)由条件可得,利用向量的线性运算证明即可;(2)由(1)的结论可得,两边同时平方计算可得结果;(3)由(1)的结论可得,两边同时平方计算可得结果.【详解】(1)在空间四边形中,、分、所成的比为,即,则有:.证明:;(2)由(1)的结论可得,,;(3)如图:与所成的角为,又由(1)的结论可得,,.【点睛】本题考查空间向量的线性运算,数量积的运算及模的运算,考查学生计算能力,是中档题.18、(1)列联表见解析;有的把握认为“身体状况好与爱好运动有关系”;(2)误差值为;(3)数学期望【解析】
(1)根据茎叶图补全列联表,计算可得,从而得到结论;(2)利用平均数公式求得真实值;利用频率直方图估计平均数的方法求得估计值,作差得到结果;(3)可知,利用二项分布数学期望计算公式求得结果.【详解】(1)由茎叶图可得列联表如下:身体状况好身体状况一般总计爱好运动不爱好运动总计有的把握认为“身体状况好与爱好运动有关系”(2)由茎叶图可得:真实值由直方图得:估计值误差值为:(3)从该厂健康指数不低于的员工中任选人,爱好运动的概率为:则数学期望【点睛】本题考查独立性检验、茎叶图和频率分布直方图的相关知识、二项分布数学期望的计算,涉及到卡方的计算、利用频率分布直方图估计平均数、随机变量服从二项分布的判定等知识,属于中档题.19、(1);(2)66人;(3)有的把握认为“礼让斑马线”行为与驾龄关.【解析】
(1)利用所给数据计算、,求出回归系数,写出回归直线方程;
(2)由(1)中的回归直线方程计算x=7时的值即可;
(3)由列联表中数据计算K2,对照临界值得出结论.【详解】(1)由表中数据知,,∴,∴,∴所求回归直线方程为.(2)由(1)知,令,则人.(3)由表中数据得,根据统计有的把握认为“礼让斑马线”行为与驾龄关.【点睛】本题考查了线性回归方程与独立性检验的应用问题,是基础题.20、(1),;(2).【解析】
(1)由椭圆以及抛物线的对称性可得到交点的纵坐标,代入,可得到交点的横坐标,再由有公共的焦点,即可得到,的值;(2)先设:,再由直线交于,两点,交于,两点,根据根与系数的关系可得横坐标之间的关系,再由已知条件可得,从而可求出.【详解】(1)∵,均关于轴对称,∴公共弦也关于轴对称,∵公共弦长为,将代入,中解得与,∴,.∵,有公共的焦点,∴,解得,.(2),设,,,,∵,∴,即,.当的斜率不存在时,显然不成立,∴设:,将方程代入整理得,,.将方程代入整理得,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 ISO 4669-2:2025 EN Document management - Information classification,marking and handling - Part 2: Functional and technical requirements for ICMH solutions
- 【正版授权】 ISO 7207-2:2025 EN Implants for surgery - Components for partial and total knee joint prostheses - Part 2: Articulating surfaces made of metal,ceramic and plastics material
- 【正版授权】 ISO 15638-23:2025 EN Intelligent transport systems - Framework for collaborative telematics applications for regulated commercial freight vehicles (TARV) - Part 23: Tyre pre
- 【正版授权】 ISO 1014-3:2025 EN Coke - Part 3: Determination of porosity
- 【正版授权】 IEC 60888:1987 FR-D Zinc-coated steel wires for stranded conductors
- 【正版授权】 IEC 60404-1:2016+AMD1:2025 CSV EN Magnetic materials - Part 1: Classification
- 【正版授权】 IEC 60245-5:1994 EN-D Rubber insulated cables - Rated voltages up to and including 450/750 V - Part 5: Lift cables
- 雀巢产品面试题及答案
- 村计生考试题及答案
- 计量基础考试题及答案
- 建筑公司分包合同管理办法
- 2025至2030苏打水行业发展趋势分析与未来投资战略咨询研究报告
- 2025年秋季学期德育工作计划:向下扎根向上开花
- 附着式钢管抱杆铁塔组立施工方案
- 工贸企业重大事故隐患判定标准培训PPT
- (完整word版)身份证号码前6位表示的地区对照表
- 高中生物的学习方法
- GE彩超Logiq操作手册培训课件
- 罐头食品工艺
- 混凝土外加剂检测原始记录表
- GB/T 15670-1995农药登记毒理学试验方法
评论
0/150
提交评论