山东省齐河县一中2023年数学高二第二学期期末教学质量检测试题含解析_第1页
山东省齐河县一中2023年数学高二第二学期期末教学质量检测试题含解析_第2页
山东省齐河县一中2023年数学高二第二学期期末教学质量检测试题含解析_第3页
山东省齐河县一中2023年数学高二第二学期期末教学质量检测试题含解析_第4页
山东省齐河县一中2023年数学高二第二学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设,则“”是“”的A.必要不充分条件 B.充分不必要条件C.充要条件 D.既不充分也不必要条件2.平面与平面平行的条件可以是()A.内有无穷多条直线都与平行B.内的任何直线都与平行C.直线,直线,且D.直线,且直线不在平面内,也不在平面内3.袋中装有6个红球和4个白球,不放回的依次摸出两球,在第一次摸到红球的条件下,第二次摸到红球的概率是A. B. C. D.4.已知集合,则()A. B. C. D.5.若是关于x的实系数方程的一个虚数根,则()A., B., C., D.,6.(2x-3)1+A.-55 B.-61 C.-63 D.-737.已知函数在时取得极大值,则的取值范围是()A. B. C. D.8.若关于的不等式的解集是,则实数等于()A.-1 B.-2 C.1 D.29.过点的直线与函数的图象交于,两点,为坐标原点,则()A. B. C.10 D.2010.已知两个随机变量X,Y满足X+2Y=4,且X~N1,  A.32,2 B.12,1 C.32,1 D.11.复数的实部与虚部分别为()A., B., C., D.,12.设集合,分别从集合A和B中随机抽取数x和y,确定平面上的一个点,记“点满足条件”为事件C,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若直线与曲线有公共点,则的取值范围是______.14.函数的零点个数为__________.15.展开式中,项的系数为______________16.颜色不同的个小球全部放入个不同的盒子中,若使每个盒子不空,则不同的方法有__________.(用数值回答)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知:(n∈N)的展开式中第五项的系数与第三项的系数的比是10:1.(1)求展开式中各项系数的和;(2)求展开式中含的项.18.(12分)在中,三个内角的对边分别为.(1)若是的等差中项,是的等比中项,求证:为等边三角形;(2)若为锐角三角形,求证:.19.(12分)已知函数.(Ⅰ)求函数的最大值,并求取最大值时的取值集合;(Ⅱ)若且,求.20.(12分)某工厂甲、乙两条相互独立的生产线生产同款产品,在产量一样的情况下通过日常监控得知,甲、乙两条生产线生产的产品为合格品的概率分别为相.(1)若从甲、乙两条生产线上各抽检一件产品。至少有一件合格的概率为.求的值:(2)在(1)的前提下,假设每生产一件不合格的产品,甲、乙两条生产钱损失分别为元和元,若从两条生产线上各随机抽检件产品。估计哪条生产线的损失较多?(3)若产品按照一、二、三等级分类后销售,每件可分别获利元,元,元,现从甲、乙生产线各随机抽取件进行检测,统计结果如图所示。用样本的频率分布估计总体分布,记该工厂生产一件产品的利润为,求的分布列并估计该厂产量为件时利润的期望值.21.(12分)如图,已知四棱锥P-ABCD中,底面ABCD是直角梯形,AD//BC,BC=2AD,AD⊥CD,PD⊥平面ABCD,E为PB的中点.(1)求证:AE//平面PDC;(2)若BC=CD=PD,求直线AC与平面PBC所成角的余弦值.22.(10分)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)天数216362574以最高气温位于各区间的频率估计最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

根据绝对值不等式和三次不等式的解法得到解集,根据小范围可推大范围,大范围不能推小范围得到结果.【详解】解得到,解,得到,由则一定有;反之,则不一定有;故“”是“”的充分不必要条件.故答案为:B.【点睛】判断充要条件的方法是:①若p⇒q为真命题且q⇒p为假命题,则命题p是命题q的充分不必要条件;②若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;③若p⇒q为真命题且q⇒p为真命题,则命题p是命题q的充要条件;④若p⇒q为假命题且q⇒p为假命题,则命题p是命题q的即不充分也不必要条件.⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.2、B【解析】

根据空间中平面与平面平行的判定方法,逐一分析题目中的四个结论,即可得到答案.【详解】平面α内有无数条直线与平面β平行时,两个平面可能平行也可能相交,故A不满足条件;平面α内的任何一条直线都与平面β平行,则能够保证平面α内有两条相交的直线与平面β平行,故B满足条件;直线a⊂α,直线b⊂β,且a∥β,b∥α,则两个平面可能平行也可能相交,故C不满足条件;直线a∥α,a∥β,且直线a不在α内,也不在β内,则α与β相交或平行,故D错误;故选B.【点睛】本题考查的知识点是空间中平面与平面平行的判定,熟练掌握面面平行的定义和判定方法是解答本题的关键.3、D【解析】

通过条件概率相关公式即可计算得到答案.【详解】设“第一次摸到红球”为事件A,“第二次摸到红球”为事件B,而,,故,故选D.【点睛】本题主要考查条件概率的相关计算,难度不大.4、C【解析】

利用对数函数的单调性对集合化简得x|0<x<1},然后求出A∩B即可.【详解】={x|0<x<2},∴A∩B={1},故选:C【点睛】考查对数不等式的解法,以及集合的交集及其运算.5、D【解析】

利用实系数一元二次的虚根成对原理、根与系数的关系即可得出.【详解】解:∵1i是关于x的实系数方程x2+bx+c=0的一个复数根,∴1i是关于x的实系数方程x2+bx+c=0的一个复数根,∴,解得b=﹣2,c=1.故选:D.【点睛】本题考查了实系数一元二次的虚根成对原理、根与系数的关系,属于基础题.6、D【解析】

令x=1得到所有系数和,再计算常数项为9,相减得到答案.【详解】令x=1,得(2x-3)1+1x6=-【点睛】本题考查了二项式系数和,常数项的计算,属于常考题型.7、A【解析】

先对进行求导,然后分别讨论和时的极值点情况,随后得到答案.【详解】由得,当时,,由,得,由,得.所以在取得极小值,不符合;当时,令,得或,为使在时取得极大值,则有,所以,所以选A.【点睛】本题主要考查函数极值点中含参问题,意在考查学生的分析能力和计算能力,对学生的分类讨论思想要求较高,难度较大.8、C【解析】

根据一元一次不等式与一元一次方程的关系,列出方程,即可求解.【详解】由题意不等式的解集是,所以方程的解是,则,解得,故选C.【点睛】本题主要考查了一元一次不等式与一元一次方程的关系的应用,着重考查了推理与运算能力,属于基础题.9、D【解析】

判断函数的图象关于点P对称,得出过点的直线与函数的图象交于A,B两点时,得出A,B两点关于点P对称,则有,再计算的值.【详解】,∴函数的图象关于点对称,∴过点的直线与函数的图象交于A,B两点,且A,B两点关于点对称,∴,则.故选D.【点睛】本题主要考查了函数的对称性,以及平面向量的数量积运算问题,是中档题.10、C【解析】

先由X~N1,  22,得E(X)=1,D(X)=4,然后由【详解】由题意X~N1,  22因为X+2Y=4,所以Y=2-1所以E(Y)=2-12E(X)=故选C.【点睛】该题考查的正态分布的期望与方差,以及两个线性关系的变量的期望与方差之间的关系,属于简单题目.11、A【解析】分析:化简即可得复数的实部和虚部.详解:复数的实数与虚部分别为5,5.故选A.点睛:复数相关概念与运算的技巧(1)解决与复数的基本概念和性质有关的问题时,应注意复数和实数的区别与联系,把复数问题实数化是解决复数问题的关键.(2)复数相等问题一般通过实部与虚部对应相等列出方程或方程组求解.(3)复数的代数运算的基本方法是运用运算法则,但可以通过对代数式结构特征的分析,灵活运用i的幂的性质、运算法则来优化运算过程.12、A【解析】

求出从集合A和B中随机各取一个数x,y的基本事件总数,和满足点P(x,y)满足条件x2+y2≤16的基本事件个数,代入古典概型概率计算公式,可得答案.【详解】∵集合A=B={1,2,3,4,5,6},分别从集合A和B中随机各取一个数x,y,确定平面上的一个点P(x,y),共有6×6=36种不同情况,其中P(x,y)满足条件x2+y2≤16的有:(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),共8个,∴C的概率P(C),故选A.【点睛】本题考查的知识点是古典概型概率计算公式,考查了列举法计算基本事件的个数,其中熟练掌握利用古典概型概率计算公式求概率的步骤,是解答的关键.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

由曲线y=3+,得(x﹣2)2+(y﹣3)2=4,0≤x≤4,直线y=x+b与曲线y=3+有公共点,圆心(2,3)到直线y=x+b的距离d不大于半径r=2,由此结合图象能求出实数b的取值范围.【详解】由曲线y=3+,得(x﹣2)2+(y﹣3)2=4,0≤x≤4,∵直线y=x+b与曲线y=3+有公共点,∴圆心(2,3)到直线y=x+b的距离d不大于半径r=2,即∵0≤x≤4,∴x=4代入曲线y=3+,得y=3,把(4,3)代入直线y=x+b,得bmin=3﹣4=﹣1,②联立①②,得.∴实数b的取值范围是[﹣1,1+2].故答案为.【点睛】本题考查实数的取值范围的求法,是中档题,解题时要认真审题,注意数形结合思想的合理运用.一般直线和圆的题很多情况下是利用数形结合来解决的,联立的时候较少;在求圆上的点到直线或者定点的距离时,一般是转化为圆心到直线或者圆心到定点的距离,再加减半径,分别得到最大值和最小值;涉及到圆的弦长或者切线长时,经常用到垂径定理.14、2【解析】

根据图像与函数的单调性分析即可.【详解】的零点个数即的根的个数,即与的交点个数.又当时,,此时在上方.当时,,,此时在下方.又对求导有,对求导有,故随的增大必有,即的斜率大于的斜率.故在时,与还会有一个交点.分别作出图像可知有两个交点.故答案为:2【点睛】本题主要考查了数形结合求解函数零点个数的问题,需要根据题意分析函数斜率的变化规律与图像性质.属于中档题.15、【解析】∴二项式展开式中,含项为∴它的系数为1.故答案为1.16、1【解析】分析:利用挡板法把4个小球分成3组,然后再把这3组小球全排列,再根据分步计数原理求得所有的不同放法的种数.详解:在4个小球之间插入2个挡板,即可把4个小球分成3组,方法有种.

然后再把这3组小球全排列,方法有种.

再根据分步计数原理可得所有的不同方法共有种,

故答案为1.点睛:本题主要考查排列、组合以及简单计数原理的应用,利用挡板法把4个小球分成3组,是解题的关键,属于中档题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)1,(2)【解析】由题意知,第五项系数为,第三项的系数,则有,解.(1)令得各项系数的和为.(2)通项公式,令,则,故展开式中含的项为.18、(1)见解析(2)见解析【解析】

(1)由是的等差中项可得,由是的等比中项,结合正弦定理与余弦定理即可得到,由此证明为等边三角形;(2)解法1:利用分析法,结合锐角三角形的性质即可证明;解法2:由为锐角三角形以及三角形的内角和为,可得,利用公式展开,进行化简即可得到.【详解】(1)由成等差数列,有①因为为的内角,所以②由①②得③由是的等比中项和正弦定理得,是的等比中项,所以④由余弦定理及③,可得再由④,得即,因此从而⑤由②③⑤,得所以为等边三角形.(2)解法1:要证只需证因为、、都为锐角,所以,故只需证:只需证:即证:因为,所以要证:即证:即证:因为为锐角,显然故原命题得证,即.解法2:因为为锐角,所以因为所以,即展开得:所以因为、、都为锐角,所以,所以即【点睛】本题考查正余弦定理、等差等比的性质,锐角三角形的性质,熟练掌握定理是解决本题的关键.19、(Ⅰ),(Ⅱ)【解析】

(Ⅰ)利用三角恒等变换化简函数的解析式,再根据正弦函数的最值,求出取最大值时的取值集合.(Ⅱ)根据且,求得,再利用两角差的余弦公式求出.【详解】(Ⅰ)∴,由,得(Ⅱ)由得,得若,则,所以,∴.【点睛】本题主要考查三角恒等变换,正弦函数的最值,两角和差的三角公式的应用,属于中档题.20、(1)(2)乙生产线损失较多.(3)见解析【解析】

(1)利用对立事件概率公式可得;(2)根据二项分布的期望公式可得;(3)根据统计图得三个等级的概率,求出随机变量的分布列,利用公式求得期望.【详解】(1)由题意,知,解得.(2)由(1)知,甲生产线产品不合格率为,乙生产线产品不合格率为.设从甲、乙生产线各随机抽检件产品,抽到不合格品件数分别为和,则,,所以,甲、乙损失的平均数分别为,.所以,乙生产线损失较多.(3)由题意,知,,.因为,,,所以的分布列为所以,(元).所以,该产量为件时利润的期望值为元.【点睛】本题主要考查了离散型随机变量的分布列及数学期望的求解,对于求离散型随机变量概率分布列问题首先要清楚离散型随机变量的可能取值,计算得出概率,列出离散型随机变量概率分布列,最后由期望公式计算出数学期望,其中列出离散型随机变量概率分布列及计算数学期望是理科高考数学必考问题.21、(1)证明见解析;(2)【解析】

(1)取的中点,连结、,推导出四边形是平行四边形,从而,由此能证明平面.(2)推导出,由,得,再推导出,,从而平面,,,,进而平面,连结,,则就是直线与平面所成角,由此能求出直线与平面所成角的余弦值.【详解】解:(1)证明:取的中点,连结、,是的中点,,且,,,,且,四边形是平行四边形,,又平面,平面.(2)解:,是等腰三角形,,又,,平面,平面,,又,平面,平面,,,又,平面,连结,,则就是直线与平面所成角,设,在中,解得,,,在中,解得,在中,,直线与平面所成角的余弦值为.【点睛】本题考查线面平行的证明,考查线面角的余弦值的求法,考查空间中线线

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论