




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数在上取得最小值时,的值为().A.0 B. C. D.2.已知函数,若,则实数a的取值范围是()A. B. C. D.3.已知点P为双曲线右支上一点,点F1,F2分别为双曲线的左右焦点,点I是△PF1F2的内心(三角形内切圆的圆心),若恒有成立,则双曲线的离心率取值范围是()A.(1,) B.(1,2)C.(1,2] D.(1,]4.下列四个图各反映了两个变量的某种关系,其中可以看作具有较强线性相关关系的是()A.①③ B.①④ C.②③ D.①②5.点是椭圆上的一个动点,则的最大值为(
)A. B. C. D.6.甲罐中有个红球,个白球和个黑球,乙罐中有个红球,个白球和个黑球,先从甲罐中随机取出一个球放入乙罐,分别以,,表示由甲罐取出的球是红球、白球和黑球的事件,再从乙罐中随机取出一个球,以表示由乙罐取出的球是红球的事件,下列结论中不正确的是()A.事件与事件不相互独立 B.、、是两两互斥的事件C. D.7.为虚数单位,复数的共轭复数是()A. B. C. D.8.如图是“向量的线性运算”知识结构,如果要加入“三角形法则”和“平行四边形法则”,应该放在()A.“向量的加减法”中“运算法则”的下位B.“向量的加减法”中“运算律”的下位C.“向量的数乘”中“运算法则”的下位D.“向量的数乘”中“运算律”的下位9.由曲线与直线,所围成的封闭图形面积为()A. B. C.2 D.10.函数(为自然对数的底数)在区间上的最大值是()A. B. C. D.11.在等差数列中,如果,且,那么必有,类比该结论,在等比数列中,如果,且,那么必有()A. B.C. D.12.已知,并且,则方差()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.已知、满足,则的最小值为________.14.两名女生,4名男生排成一排,则两名女生不相邻的排法共有______
种(以数字作答)15.,则的值为________16.选修4-5:不等式选讲设函数,(Ⅰ)求不等式的解集;(Ⅱ)若,恒成立,求实数的取值范围.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)2119年2月13日《烟台市全民阅读促进条例》全文发布,旨在保障全民阅读权利,培养全民阅读习惯,提高全民阅读能力,推动文明城市和文化强市建设.某高校为了解条例发布以来全校学生的阅读情况,随机调查了211名学生每周阅读时间(单位:小时)并绘制如图所示的频率分布直方图.(1)求这211名学生每周阅读时间的样本平均数和样本方差(同一组中的数据用该组区间的中间值代表);(2)由直方图可以认为,目前该校学生每周的阅读时间服从正态分布,其中近似为样本平均数,近似为样本方差.(i)一般正态分布的概率都可以转化为标准正态分布的概率进行计算:若令,则,且.利用直方图得到的正态分布,求.(ii)从该高校的学生中随机抽取21名,记表示这21名学生中每周阅读时间超过11小时的人数,求(结果精确到1.1111)以及的数学期望.参考数据:.若,则.18.(12分)求函数的单调区间.19.(12分)如图,三棱柱ABC-A1B1C1中,CA=CB,AB="A"A1,∠BAA1=60°.(Ⅰ)证明AB⊥A1C;(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C与平面BB1C1C所成角的正弦值.20.(12分)已知二项式展开式中的第7项是常数项.(1)求;(2)求展开式中有理项的个数.21.(12分)某公司新上一条生产线,为保证新的生产线正常工作,需对该生产线进行检测,现从该生产线上随机抽取100件产品,测量产品数据,用统计方法得到样本的平均数,标准差,绘制如图所示的频率分布直方图,以频率值作为概率估值.(1)从该生产线加工的产品中任意抽取一件,记其数据为,依据以下不等式评判(表示对应事件的概率)①②③评判规则为:若至少满足以上两个不等式,则生产状况为优,无需检修;否则需检修生产线,试判断该生产线是否需要检修;(2)将数据不在内的产品视为次品,从该生产线加工的产品中任意抽取2件,次品数记为,求的分布列与数学期望.22.(10分)某抛掷骰子游戏中,规定游戏者可以有三次机会抛掷一颗骰子,若游戏者在前两次抛掷中至少成功一次才可以进行第三次抛掷,其中抛掷骰子不成功得0分,第1次成功得3分,第2次成功得3分,第3次成功得4分.游戏规则如下:抛掷1枚骰子,第1次抛掷骰子向上的点数为奇数则记为成功,第2次抛掷骰子向上的点数为3的倍数则记为成功,第3次抛掷骰子向上的点数为6则记为成功.用随机变量表示该游戏者所得分数.(1)求该游戏者有机会抛掷第3次骰子的概率;(2)求随机变量的分布列和数学期望.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
根据三角函数的单调性分析求解即可.【详解】当时,.根据正弦函数的性质可知,当,即时,取得最小值.故选:D【点睛】本题主要考查了三角函数的最值问题,属于基础题.2、D【解析】由函数,可得,所以函数为奇函数,又,因为,所以,所以函数为单调递增函数,因为,即,所以,解得,故选D.点睛:本题考查了函数的单调性、奇偶性和函数不等式的求解问题,其中解答中函数的奇偶性和函数的单调性,转化为不等式是解答的关键,着重考查了分析问题和解答问题的能力,对于解函数不等式:首先根据函数的单调性和奇偶性把不等式转化为的形式,然后根据函数的单调性去掉“”,转化为具体的不等式(组),此时要注意与的取值应在外层函数的定义域内是试题的易错点.3、D【解析】
根据条件和三角形的面积公式,求得的关系式,从而得出离心率的取值范围,得到答案.【详解】设的内切圆的半径为,则,因为,所以,由双曲线的定义可知,所以,即,又由,所以双曲线的离心率的取值范围是,故选D.【点睛】本题考查了双曲线的几何性质——离心率的求解,其中求双曲线的离心率(或范围),常见有两种方法:①求出,代入公式;②只需要根据一个条件得到关于的齐次式,转化为的齐次式,然后转化为关于的方程,即可得的值(范围).4、B【解析】
两个变量的散点图,若样本点成带状分布,则两个变量具有线性相关关系,∴两个变量具有线性相关关系的图是①和④,故选B.考点:变量间的相关关系5、A【解析】
设,由此,根据三角函数的有界性可得结果.【详解】椭圆方程为,设,则(其中),故,的最大值为,故选A.【点睛】本题主要考查椭圆参数方程的应用,辅助角公式的应用,属于中档题.利用公式可以求出:①的周期;②单调区间(利用正弦函数的单调区间可通过解不等式求得);③值域;④对称轴及对称中心(由可得对称轴方程,由可得对称中心横坐标.6、D【解析】分析:由题意,,是两两互斥事件,条件概率公式求出,,对照选项即可求出答案.详解:由题意,,是两两互斥事件,,,,,而.所以D不正确.故选:D.点睛:本题考查相互独立事件,解题的关键是理解题设中的各个事件,且熟练掌握相互独立事件的概率简洁公式,条件概率的求法,本题较复杂,正确理解事件的内蕴是解题的关键.7、B【解析】分析:直接利用复数的除法的运算法则化简求解即可.详解:则复数的共轭复数是.故选C.点睛:本题考查复数的除法的运算法则的应用,复数的基本概念,是基础题.8、A【解析】
由“三角形法则”和“平行四边形法则”是向量的加减法的运算法则,由此易得出正确选项.【详解】因为“三角形法则”和“平行四边形法则”是向量的加减法的运算法则,故应该放在“向量的加减法”中“运算法则”的下位.故选A.【点睛】本题考查知识结构图,向量的加减法的运算法则,知识结构图比较直观地描述了知识之间的关联,解题的关键是理解知识结构图的作用及知识之间的上下位关系.9、D【解析】根据题意作出所围成的图形,如图所示,图中从左至右三个交点分别为,所以题中所求面积为,故选D10、D【解析】分析:先求导,再求函数在区间[-1,1]上的最大值.详解:由题得令因为.所以函数在区间[-1,1]上的最大值为e-1.故答案为D.点睛:(1)本题主要考查利用导数求函数的最值,意在考查学生对该知识的掌握水平.(2)设是定义在闭区间上的函数,在内有导数,可以这样求最值:①求出函数在内的可能极值点(即方程在内的根);②比较函数值,与,其中最大的一个为最大值,最小的一个为最小值.11、D【解析】分析:结合等差数列与等比数列具有的类比性,且等差数列与和差有关,等比数列与积商有关的特点,即可类比得到结论.详解:由题意,类比上述性质:在等比数列中,则由“如果,且”,则必有“”成立,故选D.点睛:本题主要考查了等差数列与等比数列之间的类比推理,其中类比推理的一般步骤:①找出等差数列与等比数列之间的相似性或一致性;②用等差数列的性质取推测等比数列的性质,得到一个明确的结论(或猜想).12、A【解析】试题分析:由得考点:随机变量的期望二、填空题:本题共4小题,每小题5分,共20分。13、4【解析】
此题考查线性规划问题,只需认真作出不等式表示的平面区域,把目标函数转化为截距式求值即可.【详解】作出不等式表示的平面区域,如图所示:令,则,作出直线l:,平移直线l,由图可得,当直线经过点B时,直线在y轴上的截距最大,此时取得最小值,得B(2,2),代入故填4.【点睛】本题主要考查学生的作图能力及分析能力,难度较小.14、480【解析】分析:由题意,先排男生,再插入女生,即可得两名女生不相邻的排法.详解:由题意,其中名男生共有种不同的排法,再将两名女生插入名男生之间,共有中不同的方法,所以两名女生不相邻的排法共有中不同的排法.点睛:本题主要考查了排列的应用,其中认真分析题意,得道现排四名男生,在把两名女生插入四名男生之间是解答的关键,着重考查了分析问题和解答问题的能力.15、【解析】
先求出f()2,从而f(f())=f(﹣2),由此能求出结果.【详解】∵函数f(x),∴f()2,f(f())=f(﹣2)=2﹣2.故答案为.【点睛】本题考查分段函数值的求法,是基础题,解题时要认真审题,注意函数解析式的合理运用.16、(1);(2).【解析】试题分析:(I)利用零点分段法去绝对值,将函数化为分段函数,由此求得不等式的解集为;(II)由(I)值,函数的最小值为,即,由此解得.试题解析:(I),当,,,当,,,当,,,综上所述.(II)易得,若,恒成立,则只需,综上所述.考点:不等式选讲.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)9,1.78(2)(i)(ii)见解析【解析】
(1)直接由平均数公式及方差公式求解;(2)(i)由题知,,则,求出,结合已知公式求解.(ⅱ)由(i)知,可得,由求解,再由正态分布的期望公式求的数学期望.【详解】解:(1),;(2)(i)由题知,,∴,.∴;(ⅱ)由(i)知,可得,.∴的数学期望.【点睛】本题考查正态分布曲线的特点及曲线所表示的意义,考查离散型随机变量得期望,是中档题.18、单调递减区间是,.【解析】
将函数解析式化为,解不等式,,可得出函数的单调递减区间.【详解】.由,,得,.所以函数的单调递减区间是,.【点睛】本题考查正切型函数的单调区间的求解,解题时要利用正切函数的奇偶性将自变量的系数化为正数,然后利用代换进行求解,考查计算能力,属于基础题.19、(1)见解析(2).【解析】
试题分析:(Ⅰ)取AB的中点O,连接OC,OA1,A1B,由已知可证OA1⊥AB,AB⊥平面OA1C,进而可得AB⊥A1C;(Ⅱ)易证OA,OA1,OC两两垂直.以O为坐标原点,的方向为x轴的正向,||为单位长,建立坐标系,可得,,的坐标,设=(x,y,z)为平面BB1C1C的法向量,则,可解得=(,1,﹣1),可求|cos<,>|,即为所求正弦值.解:(Ⅰ)取AB的中点O,连接OC,OA1,A1B,因为CA=CB,所以OC⊥AB,由于AB=AA1,∠BAA1=60°,所以△AA1B为等边三角形,所以OA1⊥AB,又因为OC∩OA1=O,所以AB⊥平面OA1C,又A1C⊂平面OA1C,故AB⊥A1C;(Ⅱ)由(Ⅰ)知OC⊥AB,OA1⊥AB,又平面ABC⊥平面AA1B1B,交线为AB,所以OC⊥平面AA1B1B,故OA,OA1,OC两两垂直.以O为坐标原点,的方向为x轴的正向,||为单位长,建立如图所示的坐标系,可得A(1,0,0),A1(0,,0),C(0,0,),B(﹣1,0,0),则=(1,0,),=(﹣1,,0),=(0,﹣,),设=(x,y,z)为平面BB1C1C的法向量,则,即,可取y=1,可得=(,1,﹣1),故cos<,>==,又因为直线与法向量的余弦值的绝对值等于直线与平面的正弦值,故直线A1C与平面BB1C1C所成角的正弦值为:.考点:用空间向量求直线与平面的夹角;直线与平面垂直的性质;平面与平面垂直的判定;直线与平面所成的角.20、(1)(2)展开式中的有理项共有3项【解析】
(1)根据二项展开式的通项以及第项是常数项计算的值;(2)根据二项展开式的通项,考虑未知数的指数为整数的情况,然后判断有理项的项数.【详解】解:(1)二项式展开式的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 机械设计试题及答案
- 郑州叉车考试试题及答案
- 2025年广汉市市直机关遴选考试笔试试题(含答案)
- 2025年大理州永平县博南镇卫生院岗招聘考试笔试试题(含答案)
- 2025宪法知识竞赛培训试题(含答案)
- 北京物业专业知识培训课件
- 手术室n1护士所有考试试题及答案
- 树枝花艺基础知识培训课件
- 2024年职业技能鉴定:信号司索工竞赛题库(附含答案)
- 2024下半年普安县事业单位招聘考试《审计基础知识》试题及答案
- 项目监理安全事故报告
- 《国防教育》课件
- 数学教育技术与信息化的融合
- 2024年医院肝胆外科实习生带教计划
- 慢性乙型肝炎防治指南(2022年版)
- 城市更新示范区规划设计建议报告
- 研学手册模板
- JGT161-2016 无粘结预应力钢绞线
- 新版实验室CNAS认可质量手册、程序文件及其记录表卡
- 236种食物的血糖生成指数
- 软件无线电原理与应用第3版楼才义部分习题答案
评论
0/150
提交评论