湖北省鄂州地区2023年中考数学模拟精编试卷含解析_第1页
湖北省鄂州地区2023年中考数学模拟精编试卷含解析_第2页
湖北省鄂州地区2023年中考数学模拟精编试卷含解析_第3页
湖北省鄂州地区2023年中考数学模拟精编试卷含解析_第4页
湖北省鄂州地区2023年中考数学模拟精编试卷含解析_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年中考数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,网格中的每个小正方形的边长是1,点M,N,O均为格点,点N在⊙O上,若过点M作⊙O的一条切线MK,切点为K,则MK=()A.3 B.2 C.5 D.2.下列对一元二次方程x2+x﹣3=0根的情况的判断,正确的是()A.有两个不相等实数根 B.有两个相等实数根C.有且只有一个实数根 D.没有实数根3.如图,有一张三角形纸片ABC,已知∠B=∠C=x°,按下列方案用剪刀沿着箭头方向剪开,可能得不到全等三角形纸片的是()A. B.C. D.4.如图所示是小孔成像原理的示意图,根据图中所标注的尺寸,求出这支蜡烛在暗盒中所成像的长()A. B. C. D.5.已知两组数据,2、3、4和3、4、5,那么下列说法正确的是()A.中位数不相等,方差不相等B.平均数相等,方差不相等C.中位数不相等,平均数相等D.平均数不相等,方差相等6.某圆锥的主视图是一个边长为3cm的等边三角形,那么这个圆锥的侧面积是()A.4.5πcm2 B.3cm2 C.4πcm2 D.3πcm27.如图,先锋村准备在坡角为的山坡上栽树,要求相邻两树之间的水平距离为米,那么这两树在坡面上的距离为()A. B. C.5cosα D.8.下列事件中为必然事件的是()A.打开电视机,正在播放茂名新闻 B.早晨的太阳从东方升起C.随机掷一枚硬币,落地后正面朝上 D.下雨后,天空出现彩虹9.把多项式x2+ax+b分解因式,得(x+1)(x-3),则a、b的值分别是()A.a=2,b=3 B.a=-2,b=-3C.a=-2,b=3 D.a=2,b=-310.如图是一个由5个相同的正方体组成的立体图形,它的主视图是()A. B.C. D.11.如图是某几何体的三视图,下列判断正确的是()A.几何体是圆柱体,高为2 B.几何体是圆锥体,高为2C.几何体是圆柱体,半径为2 D.几何体是圆锥体,直径为212.已知空气的单位体积质量是0.001239g/cm3,则用科学记数法表示该数为()A.1.239×10﹣3g/cm3 B.1.239×10﹣2g/cm3C.0.1239×10﹣2g/cm3 D.12.39×10﹣4g/cm3二、填空题:(本大题共6个小题,每小题4分,共24分.)13.我们知道,四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D'处,则点C的对应点C'的坐标为_____.14.如图,在矩形ABCD中,AD=5,AB=8,点E为射线DC上一个动点,把△ADE沿直线AE折叠,当点D的对应点F刚好落在线段AB的垂直平分线上时,则DE的长为_____.15.如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AC与BD相交于点E,AC=BC,DE=3,AD=5,则⊙O的半径为___________.16.口袋中装有4个小球,其中红球3个,黄球1个,从中随机摸出两球,都是红球的概率为_________.17.如图所示,摆第一个“小屋子”要5枚棋子,摆第二个要11枚棋子,摆第三个要17枚棋子,则摆第30个“小屋子”要___枚棋子.18.安全问题大于天,为加大宣传力度,提高学生的安全意识,乐陵某学校在进行防溺水安全教育活动中,将以下几种在游泳时的注意事项写在纸条上并折好,内容分别是:①互相关心;②互相提醒;③不要相互嬉水;④相互比潜水深度;⑤选择水流湍急的水域;⑥选择有人看护的游泳池.小颖从这6张纸条中随机抽出一张,抽到内容描述正确的纸条的概率是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)计算:.20.(6分)综合与实践﹣﹣﹣折叠中的数学在学习完特殊的平行四边形之后,某学习小组针对矩形中的折叠问题进行了研究.问题背景:在矩形ABCD中,点E、F分别是BC、AD上的动点,且BE=DF,连接EF,将矩形ABCD沿EF折叠,点C落在点C′处,点D落在点D′处,射线EC′与射线DA相交于点M.猜想与证明:(1)如图1,当EC′与线段AD交于点M时,判断△MEF的形状并证明你的结论;操作与画图:(2)当点M与点A重合时,请在图2中作出此时的折痕EF和折叠后的图形(要求:尺规作图,不写作法,保留作图痕迹,标注相应的字母);操作与探究:(3)如图3,当点M在线段DA延长线上时,线段C′D'分别与AD,AB交于P,N两点时,C′E与AB交于点Q,连接MN并延长MN交EF于点O.求证:MO⊥EF且MO平分EF;(4)若AB=4,AD=4,在点E由点B运动到点C的过程中,点D'所经过的路径的长为.21.(6分)如图,二次函数的图象与x轴交于和两点,与y轴交于点C,一次函数的图象过点A、C.(1)求二次函数的表达式(2)根据函数图象直接写出使二次函数值大于一次函数值的自变量x的取值范围.22.(8分)如图,在梯形中,,,,,点为边上一动点,作⊥,垂足在边上,以点为圆心,为半径画圆,交射线于点.(1)当圆过点时,求圆的半径;(2)分别联结和,当时,以点为圆心,为半径的圆与圆相交,试求圆的半径的取值范围;(3)将劣弧沿直线翻折交于点,试通过计算说明线段和的比值为定值,并求出次定值.23.(8分)如图,在平行四边形ABCD中,边AB的垂直平分线交AD于点E,交CB的延长线于点F,连接AF,BE.(1)求证:△AGE≌△BGF;(2)试判断四边形AFBE的形状,并说明理由.24.(10分)2018年4月22日是第49个世界地球日,今年的主题为“珍惜自然资源呵护美丽国土一讲好我们的地球故事”地球日活动周中,同学们开展了丰富多彩的学习活动,某小组搜集到的数据显示,山西省总面积为15.66万平方公里,其中土石山区面积约5.59万平方公里,其余部分为丘陵与平原,丘陵面积比平原面积的2倍还多0.8万平方公里.(1)求山西省的丘陵面积与平原面积;(2)活动周期间,两位家长计划带领若干学生去参观山西地质博物馆,他们联系了两家旅行社,报价均为每人30元.经协商,甲旅行社的优惠条件是,家长免费,学生都按九折收费;乙旅行社的优惠条件是,家长、学生都按八折收费.若只考虑收费,这两位家长应该选择哪家旅行社更合算?25.(10分)已知:如图,在半径是4的⊙O中,AB、CD是两条直径,M是OB的中点,CM的延长线交⊙O于点E,且EM>MC,连接DE,DE=.(1)求证:△AMC∽△EMB;(2)求EM的长;(3)求sin∠EOB的值.26.(12分)服装店准备购进甲乙两种服装,甲种每件进价80元,售价120元;乙种每件进价60元,售价90元,计划购进两种服装共100件,其中甲种服装不少于65件.(1)若购进这100件服装的费用不得超过7500,则甲种服装最多购进多少件?(2)在(1)条件下,该服装店在5月1日当天对甲种服装以每件优惠a(0<a<20)元的价格进行优惠促销活动,乙种服装价格不变,那么该服装店应如何调整进货方案才能获得最大利润?27.(12分)如图1,正方形ABCD的边长为4,把三角板的直角顶点放置BC中点E处,三角板绕点E旋转,三角板的两边分别交边AB、CD于点G、F.(1)求证:△GBE∽△GEF.(2)设AG=x,GF=y,求Y关于X的函数表达式,并写出自变量取值范围.(3)如图2,连接AC交GF于点Q,交EF于点P.当△AGQ与△CEP相似,求线段AG的长.

参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、B【解析】

以OM为直径作圆交⊙O于K,利用圆周角定理得到∠MKO=90°.从而得到KM⊥OK,进而利用勾股定理求解.【详解】如图所示:MK=.故选:B.【点睛】考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.2、A【解析】【分析】根据方程的系数结合根的判别式,即可得出△=13>0,进而即可得出方程x2+x﹣3=0有两个不相等的实数根.【详解】∵a=1,b=1,c=﹣3,∴△=b2﹣4ac=12﹣4×(1)×(﹣3)=13>0,∴方程x2+x﹣3=0有两个不相等的实数根,故选A.【点睛】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.3、C【解析】

根据全等三角形的判定定理进行判断.【详解】解:A、由全等三角形的判定定理SAS证得图中两个小三角形全等,故本选项不符合题意;B、由全等三角形的判定定理SAS证得图中两个小三角形全等,故本选项不符合题意;C、如图1,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE,∴∠FEC=∠BDE,所以其对应边应该是BE和CF,而已知给的是BD=FC=3,所以不能判定两个小三角形全等,故本选项符合题意;D、如图2,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE,∴∠FEC=∠BDE,∵BD=EC=2,∠B=∠C,∴△BDE≌△CEF,所以能判定两个小三角形全等,故本选项不符合题意;由于本题选择可能得不到全等三角形纸片的图形,故选C.【点睛】本题考查了全等三角形的判定,注意三角形边和角的对应关系是关键.4、D【解析】

过O作直线OE⊥AB,交CD于F,由CD//AB可得△OAB∽△OCD,根据相似三角形对应边的比等于对应高的比列方程求出CD的值即可.【详解】过O作直线OE⊥AB,交CD于F,∵AB//CD,∴OF⊥CD,OE=12,OF=2,∴△OAB∽△OCD,∵OE、OF分别是△OAB和△OCD的高,∴,即,解得:CD=1.故选D.【点睛】本题考查相似三角形的应用,解题的关键在于理解小孔成像原理给我们带来的已知条件,熟记相似三角形对应边的比等于对应高的比是解题关键.5、D【解析】

分别利用平均数以及方差和中位数的定义分析,进而求出答案.【详解】2、3、4的平均数为:(2+3+4)=3,中位数是3,方差为:[(2﹣3)2+(3﹣3)2+(3﹣4)2]=;3、4、5的平均数为:(3+4+5)=4,中位数是4,方差为:[(3﹣4)2+(4﹣4)2+(5﹣4)2]=;故中位数不相等,方差相等.故选:D.【点睛】本题考查了平均数、中位数、方差的意义,解答本题的关键是熟练掌握这三种数的计算方法.6、A【解析】

根据已知得出圆锥的底面半径及母线长,那么利用圆锥的侧面积=底面周长×母线长÷2求出即可.【详解】∵圆锥的轴截面是一个边长为3cm的等边三角形,∴底面半径=1.5cm,底面周长=3πcm,∴圆锥的侧面积=12×3π×3=4.5πcm2故选A.【点睛】此题主要考查了圆锥的有关计算,关键是利用圆锥的侧面积=底面周长×母线长÷2得出.7、D【解析】

利用所给的角的余弦值求解即可.【详解】∵BC=5米,∠CBA=∠α,∴AB==.故选D.【点睛】本题主要考查学生对坡度、坡角的理解及运用.8、B【解析】分析:根据必然事件、不可能事件、随机事件的概念可区别各类事件:A、打开电视机,正在播放茂名新闻,可能发生,也可能不发生,是随机事件,故本选项错误;B、早晨的太阳从东方升起,是必然事件,故本选项正确;C、随机掷一枚硬币,落地后可能正面朝上,也可能背面朝上,故本选项错误;D、下雨后,天空出现彩虹,可能发生,也可能不发生,故本选项错误.故选B.9、B【解析】分析:根据整式的乘法,先还原多项式,然后对应求出a、b即可.详解:(x+1)(x-3)=x2-3x+x-3=x2-2x-3所以a=2,b=-3,故选B.点睛:此题主要考查了整式的乘法和因式分解的关系,利用它们之间的互逆运算的关系是解题关键.10、A【解析】

画出从正面看到的图形即可得到它的主视图.【详解】这个几何体的主视图为:故选:A.【点睛】本题考查了简单组合体的三视图:画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.11、A【解析】试题解析:根据主视图和左视图为矩形是柱体,根据俯视图是圆可判断出这个几何体应该是圆柱,再根据左视图的高度得出圆柱体的高为2;故选A.考点:由三视图判断几何体.12、A【解析】试题分析:0.001219=1.219×10﹣1.故选A.考点:科学记数法—表示较小的数.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、(2,)【解析】过C作CH于H,由题意得2AO=AD’,所以∠D’AO=60°,AO=1,AD’=2,勾股定理知OD’=,BH=AO所以C’(2,).故答案为(2,).14、或10【解析】

试题分析:根据题意,可分为E点在DC上和E在DC的延长线上,两种情况求解即可:如图①,当点E在DC上时,点D的对应点F刚好落在线段AB的垂直平分线QP上,易求FP=3,所以FQ=2,设FE=x,则FE=x,QE=4-x,在Rt△EQF中,(4-x)2+22=x2,所以x=.(2)如图②,当,所以FQ=点E在DG的延长线上时,点D的对应点F刚好落在线段AB的垂直平分线QP上,易求FP=3,所以FQ=8,设DE=x,则FE=x,QE=x-4,在Rt△EQF中,(x-4)2+82=x2,所以x=10,综上所述,DE=或10.15、【解析】

如图,作辅助线CF;证明CF⊥AB(垂径定理的推论);证明AD⊥AB,得到AD∥OC,△ADE∽△COE;得到AD:CO=DE:OE,求出CO的长,即可解决问题.【详解】如图,连接CO并延长,交AB于点F;∵AC=BC,∴CF⊥AB(垂径定理的推论);∵BD是⊙O的直径,∴AD⊥AB;设⊙O的半径为r;∴AD∥OC,△ADE∽△COE,∴AD:CO=DE:OE,而DE=3,AD=5,OE=r-3,CO=r,∴5:r=3:(r-3),解得:r=,故答案为.【点睛】该题主要考查了相似三角形的判定及其性质、垂径定理的推论等几何知识点的应用问题;解题的关键是作辅助线,构造相似三角形,灵活运用有关定来分析、判断.16、【解析】

先画出树状图,用随意摸出两个球是红球的结果个数除以所有可能的结果个数即可.【详解】∵从中随意摸出两个球的所有可能的结果个数是12,随意摸出两个球是红球的结果个数是6,∴从中随意摸出两个球的概率=;故答案为:.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.17、1.【解析】

根据题意分析可得:第1个图案中棋子的个数5个,第2个图案中棋子的个数5+6=11个,…,每个图形都比前一个图形多用6个,继而可求出第30个“小屋子”需要的棋子数.【详解】根据题意分析可得:第1个图案中棋子的个数5个.第2个图案中棋子的个数5+6=11个.….每个图形都比前一个图形多用6个.∴第30个图案中棋子的个数为5+29×6=1个.故答案为1.【点睛】考核知识点:图形的规律.分析出一般数量关系是关键.18、【解析】

根据事件的描述可得到描述正确的有①②③⑥,即可得到答案.【详解】∵共有6张纸条,其中正确的有①互相关心;②互相提醒;③不要相互嬉水;⑥选择有人看护的游泳池,共4张,∴抽到内容描述正确的纸条的概率是,故答案为:.【点睛】此题考查简单事件的概率的计算,正确掌握事件的概率计算公式是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、【解析】

直接利用负整数指数幂的性质以及绝对值的性质、零指数幂的性质以及特殊角的三角函数值化简进而得出答案.【详解】原式=9﹣2+1﹣2=.【点睛】本题考查了实数运算,正确化简各数是解题的关键.20、(1)△MEF是等腰三角形(2)见解析(3)证明见解析(4)【解析】

(1)由AD∥BC,可得∠MFE=∠CEF,由折叠可得,∠MEF=∠CEF,依据∠MFE=∠MEF,即可得到ME=MF,进而得出△MEF是等腰三角形;(2)作AC的垂直平分线,即可得到折痕EF,依据轴对称的性质,即可得到D'的位置;(3)依据△BEQ≌△D'FP,可得PF=QE,依据△NC'P≌△NAP,可得AN=C'N,依据Rt△MC'N≌Rt△MAN,可得∠AMN=∠C'MN,进而得到△MEF是等腰三角形,依据三线合一,即可得到MO⊥EF且MO平分EF;(4)依据点D'所经过的路径是以O为圆心,4为半径,圆心角为240°的扇形的弧,即可得到点D'所经过的路径的长.【详解】(1)△MEF是等腰三角形.理由:∵四边形ABCD是矩形,∴AD∥BC,∴∠MFE=∠CEF,由折叠可得,∠MEF=∠CEF,∴∠MFE=∠MEF,∴ME=MF,∴△MEF是等腰三角形.(2)折痕EF和折叠后的图形如图所示:(3)如图,∵FD=BE,由折叠可得,D'F=DF,∴BE=D'F,在△NC'Q和△NAP中,∠C'NQ=∠ANP,∠NC'Q=∠NAP=90°,∴∠C'QN=∠APN,∵∠C'QN=∠BQE,∠APN=∠D'PF,∴∠BQE=∠D'PF,在△BEQ和△D'FP中,,∴△BEQ≌△D'FP(AAS),∴PF=QE,∵四边形ABCD是矩形,∴AD=BC,∴AD﹣FD=BC﹣BE,∴AF=CE,由折叠可得,C'E=EC,∴AF=C'E,∴AP=C'Q,在△NC'Q和△NAP中,,∴△NC'P≌△NAP(AAS),∴AN=C'N,在Rt△MC'N和Rt△MAN中,,∴Rt△MC'N≌Rt△MAN(HL),∴∠AMN=∠C'MN,由折叠可得,∠C'EF=∠CEF,∵四边形ABCD是矩形,∴AD∥BC,∴∠AFE=∠FEC,∴∠C'EF=∠AFE,∴ME=MF,∴△MEF是等腰三角形,∴MO⊥EF且MO平分EF;(4)在点E由点B运动到点C的过程中,点D'所经过的路径是以O为圆心,4为半径,圆心角为240°的扇形的弧,如图:故其长为L=.故答案为.【点睛】此题是四边形综合题,主要考查了折叠问题与菱形的判定与性质、弧长计算公式,等腰三角形的判定与性质以及全等三角形的判定与性质的综合应用,熟练掌握等腰三角形的判定定理和性质定理是解本题的关键.21、(1);(2).【解析】

(1)将和两点代入函数解析式即可;(2)结合二次函数图象即可.【详解】解:(1)∵二次函数与轴交于和两点,解得∴二次函数的表达式为.(2)由函数图象可知,二次函数值大于一次函数值的自变量x的取值范围是.【点睛】本题考查了待定系数法求二次函数解析式以及二次函数与不等式,解题的关键是熟悉二次函数的性质.22、(1)x=1(2)(1)【解析】

(1)作AM⊥BC、连接AP,由等腰梯形性质知BM=4、AM=1,据此知tanB=tanC=,从而可设PH=1k,则CH=4k、PC=5k,再表示出PA的长,根据PA=PH建立关于k的方程,解之可得;(2)由PH=PE=1k、CH=4k、PC=5k及BC=9知BE=9−8k,由△ABE∽△CEH得,据此求得k的值,从而得出圆P的半径,再根据两圆间的位置关系求解可得;(1)在圆P上取点F关于EH的对称点G,连接EG,作PQ⊥EG、HN⊥BC,先证△EPQ≌△PHN得EQ=PN,由PH=1k、HC=4k、PC=5k知sinC=、cosC=,据此得出NC=k、HN=k及PN=PC−NC=k,继而表示出EF、EH的长,从而出答案.【详解】(1)作AM⊥BC于点M,连接AP,如图1,∵梯形ABCD中,AD//BC,且AB=DC=5、AD=1、BC=9,∴BM=4、AM=1,∴tanB=tanC=,∵PH⊥DC,∴设PH=1k,则CH=4k、PC=5k,∵BC=9,∴PM=BC−BM−PC=5−5k,∴AP=AM+PM=9+(5−5k),∵PA=PH,∴9+(5−5k)=9k,解得:k=1或k=,当k=时,CP=5k=>9,舍去;∴k=1,则圆P的半径为1.(2)如图2,由(1)知,PH=PE=1k、CH=4k、PC=5k,∵BC=9,∴BE=BC−PE−PC=9−8k,∵△ABE∽△CEH,∴,即,解得:k=,则PH=,即圆P的半径为,∵圆B与圆P相交,且BE=9−8k=,∴<r<;(1)在圆P上取点F关于EH的对称点G,连接EG,作PQ⊥EG于G,HN⊥BC于N,则EG=EF、∠1=∠1、EQ=QG、EF=EG=2EQ,∴∠GEP=2∠1,∵PE=PH,∴∠1=∠2,∴∠4=∠1+∠2=2∠1,∴∠GEP=∠4,∴△EPQ≌△PHN,∴EQ=PN,由(1)知PH=1k、HC=4k、PC=5k,∴sinC=、cosC=,∴NC=k、HN=k,∴PN=PC−NC=k,∴EF=EG=2EQ=2PN=k,EH=,∴,故线段EH和EF的比值为定值.【点睛】此题考查全等三角形的性质,相似三角形的性质,解直角三角形,勾股定理,解题关键在于作辅助线.23、(1)证明见解析(2)四边形AFBE是菱形【解析】试题分析:(1)由平行四边形的性质得出AD∥BC,得出∠AEG=∠BFG,由AAS证明△AGE≌△BGF即可;(2)由全等三角形的性质得出AE=BF,由AD∥BC,证出四边形AFBE是平行四边形,再根据EF⊥AB,即可得出结论.试题解析:(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEG=∠BFG,∵EF垂直平分AB,∴AG=BG,在△AGEH和△BGF中,∵∠AEG=∠BFG,∠AGE=∠BGF,AG=BG,∴△AGE≌△BGF(AAS);(2)解:四边形AFBE是菱形,理由如下:∵△AGE≌△BGF,∴AE=BF,∵AD∥BC,∴四边形AFBE是平行四边形,又∵EF⊥AB,∴四边形AFBE是菱形.考点:平行四边形的性质;全等三角形的判定与性质;线段垂直平分线的性质;探究型.24、(1)平原面积为3.09平方公里,丘陵面积为6.98平方公里;(2)见解析.【解析】

(1)先设山西省的平原面积为x平方公里,则山西省的丘陵面积为(2x+0.8)平方公里,再根据总面积=平原面积+丘陵面积+土石山区面积列出等式求解即可;(2)先分别列出甲、乙两个旅行社收费与学生人数的关系式,然后再分情况讨论即可.【详解】解:(1)设山西省的平原面积为x平方公里,则山西省的丘陵面积为(2x+0.8)平方公里.由题意:x+2x+0.8+5.59=15.66,解得x=3.09,2x+0.8=6.98,答:山西省的平原面积为3.09平方公里,则山西省的丘陵面积为6.98平方公里.(2)设去参观山西地质博物馆的学生有m人,甲、乙旅行社的收费分别为y甲元,y乙元.由题意:y甲=30×0.9m=27m,y乙=30×0.8(m+2)=24m+48,当y甲=y乙时,27m=24m+48,m=16,当y甲>y乙时,27m>24m+48,m>16,当y甲<y乙时,27m<24m+48,m<16,答:当学生人数为16人时,两个旅行社的费用一样.当学生人数为大于16人时,乙旅行社比较合算.当学生人数为小于16人时,甲旅行社比较合算.【点睛】本题考查了一元一次方程的应用,解题的关键是熟练的掌握一元一次方程的应用.25、(1)证明见解析;(2)EM=4;(3)sin∠EOB=.【解析】

(1)连接A、C,E、B点,那么只需要求出△AMC和△EMB相似,即可求出结论,根据圆周角定理可推出它们的对应角相等,即可得△AMC∽△EMB;

(2)根据圆周角定理,结合勾股定理,可以推出EC的长度,根据已知条件推出AM、BM的长度,然后结合(1)的结论,很容易就可求出EM的长度;

(3)过点E作EF⊥AB,垂足为点F,通过作辅助线,解直角三角形,结合已知条件和(1)(2)所求的值,可推出Rt△EOF各边的长度,根据锐角三角函数的定义,便可求得sin∠EOB的值.【详解】(1)证明:连接AC、EB,如图1,∵∠A=∠BEC,∠B=∠ACM,∴△AMC∽△EMB;(2)解:∵DC是⊙O的直径,∴∠DEC=90°,∴DE2+EC2=DC2,∵DE=,CD=8,且EC为正数,∴EC=7,∵M为OB的中点,∴BM=2,AM=6,∵AM•BM=EM•CM=EM(EC﹣EM)=EM(7﹣EM)=12,且EM>MC,∴EM=4;(3)解:过点E作EF⊥AB,垂足为点F,如图2,∵OE=4,EM=4,∴OE=EM,∴OF=FM=1,∴EF=,∴sin∠EOB=.【点睛】本题考查了圆心角、弧、弦、弦心距的关系与相似三角形的判定与性质,解题的关键是熟练的掌握圆心角、弧、弦、弦心距的关系与相似三角形的判定与性质.26、(1)甲种服装最多购进75件,(2)见解析.【解析】

(1)设甲种服装购进x件,则乙种服装购进(100-x)件,然后根据购进这100件服装的费用不得超过7500元,列出不等式解答即可;(2)首先求出总利润W的表达式,然后针对a的不同取值范围进行讨论,分别确定其进货方案.【详解】(1)设购进甲种服装x件,由题意可知:80x+60(100-x)≤7500,解得x≤75答:甲种服装最多购进75件,(2)设总利润为W元,W=(120-80-a

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论