




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,已知四边形ABCD的对角线AC⊥BD,则顺次连接四边形ABCD各边中点所得的四边形是()A.矩形 B.菱形 C.正方形 D.平行四边形2.以和为根的一元二次方程是()A. B. C. D.3.已知一个多边形内角和是外角和的4倍,则这个多边形是()A.八边形 B.九边形 C.十边形 D.十二边形4.现有一块长方形绿地,它的短边长为20m,若将短边增大到与长边相等(长边不变),使扩大后的绿地的形状是正方形,则扩大后的绿地面积比原来增加300m2,设扩大后的正方形绿地边长为xm,下面所列方程正确的是()A.x(x-20)=300 B.x(x+20)=300 C.60(x+20)=300 D.60(x-20)=3005.下列各式中,不是最简二次根式的是()A. B. C. D.6.下列对一次函数y=﹣2x+1的描述错误的是()A.y随x的增大而减小B.图象经过第二、三、四象限C.图象与直线y=2x相交D.图象可由直线y=﹣2x向上平移1个单位得到7.正方形具有而菱形不一定具有的性质是()A.对角线相等 B.对角线互相垂直平分C.四条边相等 D.对角线平分一组对角8.下列计算结果正确的是()A.+= B.3-=3C.×= D.=59.方程的解是()A.x=3 B.x=2 C.x=1 D.x=﹣110.下列二次根式中最简二次根式的个数有()①;②(a>0);③;④.A.1个 B.2个 C.3个 D.4个二、填空题(每小题3分,共24分)11.如图,在▱ABCD中(AD>AB),用尺规作图作射线BP交AD于点E,若∠D=50°,则∠AEB=___度.12.农科院对甲、乙两种甜玉米各10块试验田进行试验后,得到甲、乙两个品种每公顷的平均产量相同,而甲、乙两个品种产量的方差分别为,,则产量较为稳定的品种是_____________(填“甲”或“乙”).13.自2019年5月30日万州牌楼长江大桥正式通车以来,大放光彩,引万人驻足.市民们纷纷前往打卡、拍照留念,因此牌楼长江大桥成为了万州网红打卡地.周末,小棋和小艺两位同学相约前往参观,小棋骑自行车,小艺步行,她们同时从学校出发,沿同一条路线前往,出发一段时间后小棋发现东西忘了,于是立即以原速返回到学校取,取到东西后又立即以原速追赶小艺并继续前往,到达目的地后等待小艺一起参观(取东西的时间忽略不计),在整个过程两人保持匀速,如图是两人之间的距离与出发时间之间的函数图象如图所示,则当小棋到达目的地时,小艺离目的地还有______米.14.如图,在矩形中,,点和点分别从点和点同时出发,按逆时针方向沿矩形的边运动,点和点的速度分别为和,当四边形初次为矩形时,点和点运动的时间为__________.15.已知点,,直线与线段有交点,则的取值范围是______.16.对于函数y=(m﹣2)x+1,若y随x的增大而增大,则m的取值范围_____.17.如图,在边长为1的正方形网格中,两格点之间的距离为__________1.(填“”,“”或“”).18.直接写出计算结果:(2xy)∙(-3xy3)2=_____.三、解答题(共66分)19.(10分)如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于点F,连接DF.(1)求证:∠BAC=∠DAC,∠AFD=∠CFE;(2)若AB∥CD,试证明四边形ABCD是菱形;(3)在(2)的条件下,试确定E点的位置,使∠EFD=∠BCD,并说明理由.20.(6分)如图,平行四边形ABCD的边AB在x轴上,点C的坐标为(﹣5,4),点D在y轴的正半轴上,经过点A的直线y=x﹣1与y轴交于点E,将直线AE沿y轴向上平移n(n>0)个单位长度后,得到直线l,直线l经过点C时停止平移.(1)点A的坐标为,点B的坐标为;(2)若直线l交y轴于点F,连接CF,设△CDF的面积为S(这里规定:线段是面积为0的三角形),求S与n之间的函数关系式,并写出n的取值范围;(3)易知AE⊥AD于点A,若直线l交折线AD﹣DC于点P,当△AEP为直角三角形时,请直接写出n的取值范围.21.(6分)如图①,在△ABC中,AB=AC,过AB上一点D作DE∥AC交BC于点E,以E为顶点,ED为一边,作∠DEF=∠A,另一边EF交AC于点F.(1)求证:四边形ADEF为平行四边形;(2)当点D为AB中点时,判断▱ADEF的形状;(3)延长图①中的DE到点G,使EG=DE,连接AE,AG,FG,得到图②,若AD=AG,判断四边形AEGF的形状,并说明理由.22.(8分)实践与探究如图,在平面直角坐标系中,直线交轴于点,交轴于点,点坐标为。直线与直线相交于点,点的横坐标为1。(1)求直线的解析式;(2)若点是轴上一点,且的面积是面积的,求点的坐标;23.(8分)“黄金1号”玉米种子的价格为5元/kg.如果一次购买5kg以上的种子,超过5kg部分的种子价格打8折.(1)购买3kg种子,需付款元,购买6kg种子,需付款元.(2)设购买种子xkg,付款金额为y元,写出y与x之间的函数解析式.(3)张大爷要购买种子5千克,李大爷要购买种子4千克,怎样购买让他们花钱最少?他们各应付款多少元?(结果保留整数)24.(8分)中国数学史上最先完成勾股定理证明的数学家是公元3世纪三国时期的赵爽,他为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成.将图中正方形MNKT,正方形EFGH,正方形ABCD的面积分别记为,,.若,则正方形EFGH的面积为_______.25.(10分)如图,四边形ABCD中,,E是边CD的中点,连接BE并延长与AD的延长线相较于点F.(1)求证:四边形BDFC是平行四边形;(2)若△BCD是等腰三角形,求四边形BDFC的面积.26.(10分)甲、乙两车从A城出发匀速行驶至B城,在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶时间x(小时)之间的函数关系如图所示,根据图象提供的信息,解决下列问题:(1)A,B两城相距多少千米?(2)分别求甲、乙两车离开A城的距离y与x的关系式.(3)求乙车出发后几小时追上甲车?(4)求甲车出发几小时的时候,甲、乙两车相距50千米?
参考答案一、选择题(每小题3分,共30分)1、A【解析】试题分析:如图:∵E、F、G、H分别是边AD、AB、BC、CD的中点,∴EF∥BD,GH∥BD,EF=BD,GH=BD,EH=AC,∴EF∥GH,EF=GH,∴四边形EFGH是平行四边形,∵AC=BD,EF=BD,EH=AC,∴EF=EH,∴平行四边形EFGH是菱形.故选B.考点:1.三角形中位线定理;2.菱形的判定.2、B【解析】
根据已知两根确定出所求方程即可.【详解】以2和4为根的一元二次方程是x2﹣6x+8=0,故选B.【点睛】此题考查了根与系数的关系,弄清根与系数的关系是解本题的关键.3、C【解析】
设这个多边形的边数为n,然后根据内角和与外角和公式列方程求解即可.【详解】设这个多边形的边数为n,则(n-2)×180°=4×360°,解得:n=10,故选C.【点睛】本题主要考查多边形的内角和定理及多边形的外角和定理,熟练掌握多边形内角和定理是解答本题的关键.n变形的内角和为:(n-2)×180°,n变形的外角和为:360°;然后根据等量关系列出方程求解.4、A【解析】
设扩大后的正方形绿地边长为xm,根据“扩大后的绿地面积比原来增加300m2”建立方程即可.【详解】设扩大后的正方形绿地边长为xm,根据题意得x(x-20)=300,
故选A.【点睛】本题考查了由实际问题抽象出一元二次方程,解题的关键是弄清题意,并找到等量关系.5、A【解析】
根据最简二次根式的定义即可判断.【详解】解:A、=,故不是最简二次根式;B、是最简二次根式;C、是最简二次根式;D、是最简二次根式.故本题选择A.【点睛】掌握判断最简二次根式的依据是解本题的关键.6、B【解析】分析:根据一次函数的性质,通过判断k和b的符号来判断函数所过的象限及函数与x轴y轴的交点.详解:在y=﹣2x+1中,∵k=﹣2<0,∴y随x的增大而减小;∵b=1>0,∴函数与y轴相交于正半轴,∴可知函数过第一、二、四象限;∵k=﹣2≠2,∴图象与直线y=2x相交,直线y=﹣2x向上平移1个单位,得到函数解析式为y=﹣2x+1.故选B.点睛:本题考查了一次函数的性质,知道系数和图形的关系式解题的关键.7、A【解析】
根据正方形和菱形的性质可以判断各个选项是否正确.【详解】解:正方形的对角线相等,菱形的对角线不相等,故A符合题意;
正方形和菱形的对角线都互相垂直平分,故B不符合题意;
正方形和菱形的四条边都相等,故C不符合题意;正方形和菱形的对角线都平分一组对角,故D不符合题意,
故选:A.【点睛】本题考查正方形和菱形的性质,解答本题的关键是熟练掌握基本性质.8、C【解析】选项A.不能计算.A错误.选项B.,B错误.选项C.,正确.选项D.,D错误.故选C.9、D【解析】
采用排除法和代入法相结合,即可确定答案。【详解】解:由x=1为增根,故排除C;A选项,当x=3,方程左边为1,右边为,显然不对;B选项,当x=2时,方程左边为2,右边,显然不对;当x=-1时,方程左边为-1,右边为-1,即D正确;故答案为D.【点睛】本题考查了分式方程的解法,但作为选择题,采用排除法和代入法也是一种不错的选择。10、B【解析】
判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】解:①,不是最简二次根式;②,是最简二次根式;③,是最简二次根式;④,不是最简二次根式;故选:B.【点睛】本题考查的是最简二次根式,最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.二、填空题(每小题3分,共24分)11、1.【解析】
由平行四边形的性质可知:AD∥BC,推出∠AEB=∠EBC,求出∠EBC即可;【详解】∵四边形ABCD是平行四边形,∴∠ABC=∠D=50°,AD∥BC,由作图可知,BE平分∠ABC,∴∠EBC=∠ABC=1°,∴∠AEB=∠EBC=1°,故答案为1.【点睛】本题考查平行四边形的性质、角平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.12、乙【解析】因为S甲2≈0.01>S乙2≈0.002,方差小的为乙,所以本题中比较稳定的是乙.13、400【解析】
设小祺的速度为x米/分钟,小艺的速度为y米/分钟,由题意列方程组,可求出小祺的速度与小艺的速度.【详解】设小祺的速度为x米/分钟,小艺的速度为y米/分钟则有:∴∴设小祺的速度为130米/分钟,小艺的速度为70米/分钟∴当小祺到达目的地时,小艺离目的地的距离=米故答案为:400米【点睛】本题考查了一次函数与一元一次方程的应用,关键是把条件表述的几个过程对应图象理解,再找出对应数量关系.14、1【解析】
根据矩形的性质,可得BC与AD的关系,根据矩形的判定定理,可得BP=AQ,构建一元一次方程,可得答案.【详解】解;设最快x秒,四边形ABPQ成为矩形,由BP=AQ得
3x=20−2x.
解得x=1,
故答案为:1.【点睛】本题考查了一元一次方程的应用,能根据矩形的性质得出方程是解此题的关键.15、﹣1≤m≤1.【解析】
分别把点,代入直线,求得m的值,由此即可判定的取值范围.【详解】把M(﹣1,2)代入y=x+m,得﹣1+m=2,解得m=1;把N(2,1)代入y=x+m得2+m=1,解得m=﹣1,所以当直线y=x+m与线段MN有交点时,m的取值范围为﹣1≤m≤1.故答案为:﹣1≤m≤1.【点睛】本题考查了一次函数的图象与线段的交点,根据点的坐标求得对应m的值,再利用数形结合思想是解决本题的关键.16、m>1【解析】
根据图象的增减性来确定(m﹣1)的取值范围,从而求解.【详解】解:∵一次函数y=(m﹣1)x+1,若y随x的增大而增大,∴m﹣1>2,解得,m>1.故答案是:m>1.【点睛】本题考查了一次函数的图象与系数的关系.函数值y随x的增大而减小⇔k<2;函数值y随x的增大而增大⇔k>2.17、<【解析】
根据勾股定理即可得到结论.【详解】解:点A,B之间的距离d=<1,
故答案为:<.【点睛】本题考查了勾股定理,熟练掌握勾股定理是解题的关键.18、18.【解析】
根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.【详解】(2xy)•(-3xy3)2=(2×9)•(x•x2)•(y•y6)=18x3y7.【点睛】本题考查了单项式与单项式相乘.熟练掌握运算法则是解题的关键.三、解答题(共66分)19、(1)证明见解析(2)证明见解析(3)当BE⊥CD时,∠EFD=∠BCD【解析】
(1)先判断出△ABC≌△ADC得到∠BAC=∠DAC,再判断出△ABF≌△ADF得出∠AFB=∠AFD,最后进行简单的推算即可;(2)先由平行得到角相等,用等量代换得出∠DAC=∠ACD,最后判断出四边相等;(3)由(2)得到判断出△BCF≌△DCF,结合BE⊥CD即可.【详解】(1)证明:在△ABC和△ADC中,AB=ADCB=CD∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC,在△ABF和△ADF中,AB=AD∠BAF=∠DAF∴△ABF≌△ADF(SAS),∴∠AFB=∠AFD,∵∠CFE=∠AFB,∴∠AFD=∠CFE,∴∠BAC=∠DAC,∠AFD=∠CFE;(2)证明:∵AB∥CD,∴∠BAC=∠ACD,∵∠BAC=∠DAC,∴∠BAC=∠ACD,∴∠DAC=∠ACD,∴AD=CD,∵AB=AD,CB=CD,∴AB=CB=CD=AD,∴四边形ABCD是菱形;(3)BE⊥CD时,∠BCD=∠EFD;理由如下:∵四边形ABCD是菱形,∴BC=CD,∠BCF=∠DCF,∵CF=CF,∴△BCF≌△DCF,∴∠CBF=∠CDF,∵BE⊥CD,∴∠BEC=∠DEF=90°,∴∠BCD=∠EFD.20、(1)A(2,0),B(-3,0);(2)当0≤n≤1时,S=10-2n;当1<n≤时,S=2n-10;(3)n=或0≤n≤1.【解析】
(1)令y=0,则x-1=0,求A(2,0),由平行四边形的性质可知AB=1,则B(-3,0);(2)易求E(0,-1),当l到达C点时的解析式为y=x+,当0≤n≤1时,S=×4×(1-n)=10-2n;当1<n≤时,S=×4×(n-1)=2n-10;(3)由点可以得到AD⊥AE;当P在AD上时,△AEP为直角三角形,0≤n≤1;当P在CD上时,△AEP为直角三角形,则PE⊥AE,设P(m,4),可得=-2,求出P(-,4),此时l的解析式为y=x+,则n=.【详解】(1)令y=0,则x-1=0,x=2,∴A(2,0),∵C的坐标为(-1,4),四边形ABCD是平行四边形,∴AB=CD=1,∴OB=AB-OA=3,∴B(-3,0);(2)当x=0时,y=x﹣1=-1,所以E(0,-1),∵直线AE沿y轴向上平移得到l,当l到达C点时的解析式为y=x+,此时l与y轴的交点为(0,),当0≤n≤1时,S=×4×(1-n)=10-2n;当1<n≤时,S=×4×(n-1)=2n-10;(3)∵D(0,4),A(2,0),E(0,-1),∴AD=2,AE=,ED=1,∴AD2+AE2=ED2,∴AD⊥AE,当P在AD上时,△AEP为直角三角形,∴0≤n≤1;当P在CD上时,△AEP为直角三角形,则PE⊥AE,设P(m,4),∴=-2,∴m=-,∴P(-,4),∴此时l的解析式为y=x+,∴n=;综上所述:当△AEP为直角三角形时,n=或0≤n≤1.【点睛】本题是一次函数的综合题;熟练掌握①平行四边形的性质求点的坐标;②动点中求三角形面积;③利用直角三角形的性质解决直线解析式,进而确定n的范围是解题的关键.21、(1)证明见解析;(2)▱ADEF的形状为菱形,理由见解析;(3)四边形AEGF是矩形,理由见解析.【解析】
(1)根据平行线的性质得到∠BDE=∠A,根据题意得到∠DEF=∠BDE,根据平行线的判定定理得到AD∥EF,根据平行四边形的判定定理证明;(2)根据三角形中位线定理得到DE=AC,得到AD=DE,根据菱形的判定定理证明;(3)根据等腰三角形的性质得到AE⊥EG,根据有一个角是直角的平行四边形是矩形证明.【详解】(1)证明:∵DE∥AC,∴∠BDE=∠A,∵∠DEF=∠A,∴∠DEF=∠BDE,∴AD∥EF,又∵DE∥AC,∴四边形ADEF为平行四边形;(2)解:□ADEF的形状为菱形,理由如下:∵点D为AB中点,∴AD=AB,∵DE∥AC,点D为AB中点,∴DE=AC,∵AB=AC,∴AD=DE,∴平行四边形ADEF为菱形,(3)四边形AEGF是矩形,理由如下:由(1)得,四边形ADEF为平行四边形,∴AF∥DE,AF=DE,∵EG=DE,∴AF∥DE,AF=GE,∴四边形AEGF是平行四边形,∵AD=AG,EG=DE,∴AE⊥EG,∴四边形AEGF是矩形.故答案为:(1)证明见解析;(2)菱形;(3)矩形.【点睛】本题考查的是平行四边形、矩形、菱形的判定,掌握它们的判定定理是解题的关键.22、(1);(2)点的坐标为或【解析】
(1)先求出C点坐标,再利用待定系数法确定函数关系式即可求解;(2)先求出A点坐标,再过点作轴,垂足为点;过点作轴,垂足为点,设点的坐标为,根据三角形的面积即可列出式子求解;【详解】解:(1)∵点在上,且横坐标是1,∴把代入中,得,∴点的坐标为,设直线的解析式为,将点的坐标代入得解得∴直线的解析式为;(2)∵点是直线与轴的交点,∴把代入中得,,∴点坐标为,过点作轴,垂足为点;过点作轴,垂足为点,由点的坐标为可得,,设点的坐标为,依题意得,,即,解得,,∴点的坐标为或;【点睛】此题主要考查一次函数的图像,解题的关键是熟知一次函数的的性质及三角形的面积求解.23、(1)15,1;(2);(3)张大爷和李大爷一起购买花钱最少,张大爷应付款23元,李大爷应付款18
元.【解析】
(1)根据题意,可以分别计算出购买3kg和购买6kg种子需要付款的金额;
(2)根据题意,可以分别写出0≤x≤5和x>5时对应的函数解析式;
(3)根据题意,可知张大爷和李大爷一起购买花钱最少,然后算出他们需要付款的金额即可.【详解】解:(1)由题意可得,
购买3kg种子需要付款:5×3=15(元),
购买6kg种子需要付款:5×5+(6−5)×5×0.8=1(元),故答案为:15,1.(2)由题意可得,
当0≤x≤5时,y=5x,
当x>5时,y=5×5+5×0.8(x−5)=4x+5,∴(3)一次性购买9kg种子花钱最少.若单独购买,则张大爷和李大爷分别付款25元和20元,若一起购买9kg,则把代人得,.(元),(元)∴张大爷和李大爷一起购买花钱最少,张大爷应付款23元,李大爷应付款18元.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,列出一次函数解析式.24、1【解析】
设四边形MTKN的面积为x,八个全等的三角形面积一个设为y,构建方程组,利用整体的思想思考问题,求出x+4y即可.【详解】解:设四边形MTKN的面积为x,八个全等的三角形面积一个设为y,
∵正方形MNKT,正方形EFGH,正方形ABCD的面积分别为S1,S2,S3,S1+S2+S3=18,
∴得出S1=x,S2=4y+x,S3=8y+x,
∴S1+S2+S3=3x+12y=18,故3x+12y=18,
x+4y=1,
所以S2=x+4y=1,即正方形EFGH的面积为1.
故答案为1【点睛】本题考查勾股定理的证明,正方形的性质、全等三角形的性质等知识,解题的关键是学会利用参数,构建方程组解决问题.25、(1)见解析;(2)6或【解析】
(1)根据平行线的性质和中点的性质证明三角形全等,然后根据对角线互相平分的四边形是平行四边形完成证明;(2)由等腰三角形的性质,分三种情况:①BD=BC,②BD=CD,③BC=CD,分别求四边形的面积.【详解】解:(1)证明:∵∠
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026届广西陆川县联考八年级物理第一学期期末质量跟踪监视模拟试题含解析
- 2026届安徽省六安市物理八上期末检测模拟试题含解析
- 2026届贵州省黔西南兴仁市黔龙学校物理八上期末调研试题含解析
- 2026届甘肃省武威第八中学物理八上期末学业质量监测模拟试题含解析
- 河南省大联考2026届物理八上期末质量检测模拟试题含解析
- 贵州省贵阳市2026届物理八年级第一学期期末综合测试模拟试题含解析
- 江苏省南京市29中学2026届八年级物理第一学期期末综合测试模拟试题含解析
- 2026届内蒙古呼伦贝尔市莫旗物理八年级第一学期期末学业水平测试试题含解析
- 2026届湖北宜昌物理八年级第一学期期末监测模拟试题含解析
- 2026届江苏省镇江市丹阳实验中学物理八年级第一学期期末经典模拟试题含解析
- 2025年广安市中考化学试卷真题(含标准答案及解析)
- 10.4热机【2025秋北师大新版九上物理主题式课件】
- 甲醇改装培训课件
- 贵州人民版一年级劳动上册全册教案
- 2025年度事业单位考试(D类)《中学综合应用能力》新版真题卷(附答案)
- 口腔设备学发展史
- 2025年广西专业技术人员继续教育公需科目(二)答案
- 外墙防水渗漏红外检测技术
- 监控系统维护方案
- 二手电车买卖合同范本
- 中介拍卖合同协议书范本
评论
0/150
提交评论