




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.“分数”与“分式”有许多共同点,我们在学习“分式”时,常常对比“分数”的相关知识进行学习,这体现的数学思想方法是()A.分类 B.类比 C.方程 D.数形结合2.如果分式有意义,那么x的取值范围是()A.x≠-1 B.x=-1 C.x≠1 D.x>13.如图,在菱形ABCD中,E是AC的中点,EF∥CB,交AB于点F,如果EF=3,那么菱形ABCD的周长为()A.24 B.18 C.12 D.94.下列变形是因式分解的是()A.x(x+1)=x2+x B.m2n+2n=n(m+2)C.x2+x+1=x(x+1)+1 D.x2+2x﹣3=(x﹣1)(x+3)5.下列各曲线中不能表示y是x函数的是()A. B. C. D.6.下列命题是真命题的是()A.平行四边形对角线相等 B.直角三角形两锐角互补C.不等式﹣2x﹣1<0的解是x<﹣ D.多边形的外角和为360°7.矩形ABCD的对角线AC、BD相交于点O,∠AOD=120°,AC=8,则△ABO的周长为()A.12 B.14 C.16 D.188.在下列各图中,可以由题目条件得出∠1=∠2的图形个数为()A.1 B.2 C.3 D.49.如图,在平行四边形ABCD中,对角线AC与BD相交于点O,AB=5,AC+BD=20,则△AOB的周长为()A.10 B.20C.15 D.2510.为了改善居民住房条件,某市计划用未来两年的时间,将城镇居民的住房面积由现在的人均20平方厘米提高到24.2平方厘米,每年的增长率相同,设为x,则可列方程是()A.(1+x)2=24.2 B.20(1+x)2=24.2C.(1﹣x)2=24.2 D.20(1﹣x)2=24.2二、填空题(每小题3分,共24分)11.《九章算术》是中国古代的数学专著,它奠定了中国古代数学的基本框架,以计算为中心,密切联系实际,以解决人们生产、生活中的数学问题为目的.书中记载了这样一个问题:“今有句五步,股十二步.问句中容方几何.”其大意是:如图,Rt△ABC的两条直角边的长分别为5和12,则它的内接正方形CDEF的边长为_____.12.甲、乙两车分别从A、B两地同时出发,相向行驶,已知甲车的速度大于乙车的速度,甲车到达B地后马上以另一速度原路返回A地(掉头的时间忽略不计),乙车到达A地以后即停在地等待甲车.如图所示为甲乙两车间的距离y(千米)与甲车的行驶时间t(小时)之间的函数图象,则当乙车到达A地的时候,甲车与A地的距离为_____千米.13.化简的结果为___________14.如图,在中,,以顶点为圆心,适当长为半径画弧,分别交,于点,,再分别以点,为圆心,大于的长为半径画弧,两弧交于点,作射线交于点,若,,则的值是__________.15.某班30名学生的身高情况如下表:身高(m)1.451.481.501.531.561.60人数256854则这30名学生的身高的众数是______.16.下面是小明设计的“过三角形的一个顶点作该顶点对边的平行线”的尺规作图过程.已知:如图1,△ABC.求作:直线AD,使AD∥BC.作法:如图2:①分别以点A、C为圆心,以大于AC为半径作弧,两弧交于点E、F;②作直线EF,交AC于点O;③作射线BO,在射线BO上截取OD(B与D不重合),使得OD=OB;④作直线AD.∴直线AD就是所求作的平行线.根据小明设计的尺规作图过程,完成下面的证明.证明:连接CD.∵OA=OC,OB=OD,∴四边形ABCD是平行四边形(_______________________)(填推理依据).∴AD∥BC(__________________________________)(填推理依据).17.如图,△ABC是等腰直角三角形,∠A=90°,点P.Q分別是AB、AC上的动点,且满足BP=AQ,D是BC的中点,当点P运动到___时,四边形APDQ是正方形.18.内角和等于外角和2倍的多边形是__________边形.三、解答题(共66分)19.(10分)如图,在平行四边形ABCD中,点E是对角线AC上一点,连接BE并延长至F,使EF=BE.求证:DF∥AC.20.(6分)化简:÷(-a-2),并代入一个你喜欢的值求值.21.(6分)(1);(2);22.(8分)已知,在平面直角坐标系中,矩形OABC的边OA、OC分别在x轴的正半轴、y轴的正半轴上,且OA、OC()的长是方程的两个根.(1)如图,求点A的坐标;(2)如图,将矩形OABC沿某条直线折叠,使点A与点C重合,折痕交CB于点D,交OA于点E.求直线DE的解析式;(3)在(2)的条件下,点P在直线DE上,在直线AC上是否存在点Q,使以点A、B、P、Q为顶点的四边形是平行四边形.若存在,请求出点Q坐标;若不存在,请说明理由.23.(8分)昨天早晨7点,小明乘车从家出发,去西安参加中学生科技创新大赛,赛后,他当天按原路返回,如图,是小明昨天出行的过程中,他距西安的距离y(千米)与他离家的时间x(时)之间的函数图象.根据下面图象,回答下列问题:(1)求线段AB所表示的函数关系式;(2)已知昨天下午3点时,小明距西安112千米,求他何时到家?24.(8分)如图,折叠矩形ABCD的一边AD,使点D落在BC边上的点F处,折痕为AE,若BC=10cm,AB=8cm,求EF的长.25.(10分)点D是等边三角形ABC外一点,且DB=DC,∠BDC=120°,将一个三角尺60°角的顶点放在点D上,三角尺的两边DP,DQ分别与射线AB,CA相交于E,F两点.(1)当EF∥BC时,如图①所示,求证:EF=BE+CF.(2)当三角尺绕点D旋转到如图②所示的位置时,线段EF,BE,CF之间的上述数量关系是否成立?如果成立,请说明理由;如果不成立,写出EF,BE,CF之间的数量关系,并说明理由.(3)当三角尺绕点D继续旋转到如图③所示的位置时,(1)中的结论是否发生变化?如果不变化,直接写出结论;如果变化,请直接写出EF,BE,CF之间的数量关系.26.(10分)某种水泥储存罐的容量为25立方米,它有一个输入口和一个输出口.从某时刻开始,只打开输入口,匀速向储存罐内注入水泥,3分钟后,再打开输出口,匀速向运输车输出水泥,又经过2.5分钟储存罐注满,关闭输入口,保持原来的输出速度继续向运输车输出水泥,当输出的水泥总量达到8立方米时,关闭输出口.储存罐内的水泥量y(立方米)与时间x(分)之间的部分函数图象如图所示.(1)求每分钟向储存罐内注入的水泥量.(2)当3≤x≤5.5时,求y与x之间的函数关系式.(3)储存罐每分钟向运输车输出的水泥量是立方米,从打开输入口到关闭输出口共用的时间为分钟.
参考答案一、选择题(每小题3分,共30分)1、B【解析】
根据分式和分数的基本性质,成立的条件等相关知识,分析求解.【详解】“分数”与“分式”有许多共同点,我们在学习“分式”时,常常对比“分数”的相关知识进行学习,比如分数的基本性质,分数成立的条件等,这体现的数学思想方法是类比故选:B【点睛】本题的解题关键是掌握分数和分式的基本性质和概念.2、C【解析】
根据分式有意义的条件,分母不等于0列不等式求解即可.【详解】解:由题意,得x-1≠0,
解得x≠1,
故选:C.【点睛】本题考查分式有意义的条件,熟知分式有意义的条件是分母不等于零是解题的关键.3、A【解析】【分析】易得BC长为EF长的2倍,那么菱形ABCD的周长=4BC问题得解.【详解】∵E是AC中点,∵EF∥BC,交AB于点F,∴EF是△ABC的中位线,∴BC=2EF=2×3=6,∴菱形ABCD的周长是4×6=24,故选A.【点睛】本题考查了三角形中位线的性质及菱形的周长公式,熟练掌握相关知识是解题的关键.4、D【解析】
根据因式分解是把一个多项式转化成几个整式乘积的形式,可得答案.【详解】A、是整式的乘法,故A错误;B、等式不成立,故B错误;C、没把一个多项式转化成几个整式乘积的形式,故C错误;D、把一个多项式转化成几个整式乘积的形式,故D正确;故选:D.【点睛】此题考查因式分解的意义,解题关键在于掌握其定义5、D【解析】
根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定答案.【详解】显然A、B、C选项中,对于自变量x的任何值,y都有唯一的值与之相对应,y是x的函数;D选项对于x取值时,y都有3个或2个值与之相对应,则y不是x的函数;故选D.【点睛】本题主要考察函数的定义,属于基础题,熟记函数的定义是解题的关键.6、D【解析】
根据平行四边形的性质、直角三角形的性质、一元一次不等式的解法、多边形的外角和定理判断即可.【详解】平行四边形对角线不一定相等,A是假命题;直角三角形两锐角互余,B是假命题;不等式-2x-1<0的解是x>-,C是假命题;多边形的外角和为360°,D是真命题;故选D.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.7、A【解析】
由矩形的性质得出OA=OB,再证明△AOB是等边三角形,得出AB=OA=OB=4,即可求出△ABO的周长.【详解】∵四边形ABCD是矩形,∴OA=AC=4,OB=BD,AC=BD,∴OA=OB,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴AB=OA=OB=4,∴△ABO的周长=OA+OB+AB=12;故选A.【点睛】本题考查了矩形的性质、等边三角形的判定与性质;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.8、C【解析】
根据等腰三角形的性质对第一个图形进行判断,根据对顶角相等对第1个图进行判断;根据平行线的性质和对顶角相等对第3个图进行判断;根据三角形外角性质对第4个图进行判断.【详解】解:在第一个图中,∵AB=AC,∴∠1=∠1;在第二个图中,∠1=∠1;在第三个图中,∵a∥b,∴∠1=∠3,而∠1=∠3,∴∠1=∠1;在第四个图中,∠1>∠1.故选:C.【点睛】本题考查了等腰三角形的性质,平行线的性质,对顶角相等,正确的识别图形是解题的关键.9、C【解析】
根据平行四边形的性质求解即可.【详解】∵四边形ABCD是平行四边形∴∵AC+BD=20∴∴△AOB的周长故答案为:C.【点睛】本题考查了三角形的周长问题,掌握平行四边形的性质是解题的关键.10、B【解析】
如果设年增长率为x,则可以根据“住房面积由现在的人均约为10平方厘米提高到14.1平方厘米”作为相等关系得到方程10(1+x)1=14.1.【详解】解:设每年的增长率为x,根据题意得10(1+x)1=14.1,故选:B.【点睛】本题考查列一元二次方程,解题的关键是读懂题意,由题意得到等式10(1+x)1=14.1.二、填空题(每小题3分,共24分)11、【解析】
根据正方形的性质得:DE∥BC,则△ADE∽△ACB,列比例式可得结论.【详解】∵四边形CDEF是正方形,AC=5,BC=12,∴CD=ED,DE∥CF,设ED=x,则CD=x,AD=5-x,∵DE∥CF,∴∠ADE=∠C,∠AED=∠B,∴△ADE∽△ACB,∴,∴,解得:x=,故答案为.【点睛】此题考查了相似三角形的判定和性质、正方形的性质,设未知数,构建方程是解题的关键.12、630【解析】分析:两车相向而行5小时共行驶了900千米可得两车的速度之和为180千米/时,当相遇后车共行驶了720千米时,甲车到达B地,由此则可求得两车的速度.再根据甲车返回到A地总用时16.5小时,求出甲车返回时的速度即可求解.详解:设甲车,乙车的速度分别为x千米/时,y千米/时,甲车与乙车相向而行5小时相遇,则5(x+y)=900,解得x+y=180,相遇后当甲车到达B地时两车相距720千米,所需时间为720÷180=4小时,则甲车从A地到B需要9小时,故甲车的速度为900÷9=100千米/时,乙车的速度为180-100=80千米/时,乙车行驶900-720=180千米所需时间为180÷80=2.25小时,甲车从B地到A地的速度为900÷(16.5-5-4)=120千米/时.所以甲车从B地向A地行驶了120×2.25=270千米,当乙车到达A地时,甲车离A地的距离为900-270=630千米.点睛:利用函数图象解决实际问题,其关键在于正确理解函数图象横,纵坐标表示的意义,抓住交点,起点.终点等关键点,理解问题的发展过程,将实际问题抽象为数学问题,从而将这个数学问题变化为解答实际问题.13、【解析】
根据二次根式的性质即可化简.【详解】依题意可知m<0,∴=【点睛】此题主要考查二次根式的化简,解题的关键是熟知二次根式的性质.14、1【解析】
过点D作DE⊥BC于E,根据角平分线的作法可知CD平分∠ACB,然后根据角平分线的性质可得DE=AD=3,然后根据三角形的面积公式求面积即可.【详解】解:过点D作DE⊥BC于E由题意可知:CD平分∠ACB∵∴DE=AD=3∵∴=故答案为:1.【点睛】此题考查的是用尺规作图作角平分线和角平分线的性质,掌握角平分线的作法和角平分线的性质是解决此题的关键.15、1.1.【解析】
根据众数的定义,即出现次数最多的【详解】在这一组数据中1.1出现了8次,次数最多,故众数是1.1.故答案为1.1.【点睛】此题考查众数,难度不大16、对角线互相平分的四边形是平行四边形平行四边形对边平行【解析】
根据平行四边形的判定及性质依次判断即可.【详解】证明:连接CD,
∵OA=OC,
OB=OD,
∴四边形ABCD是平行四边形(对角线互相平分的四边形是平行四边形),∴AD∥BC
(平行四边形的对边平行),
故答案为:对角线互相平分的四边形是平行四边形;平行四边形的对边平行.【点睛】此题考查平行四边形的判定与性质,熟记定理是解题的关键.17、AB的中点.【解析】
若四边形APDQ是正方形,则DP⊥AP,得到P点是AB的中点.【详解】当P点运动到AB的中点时,四边形APDQ是正方形;理由如下:∵∠BAC=90°,AB=AC,D为BC中点,∴AD⊥BC,AD=BD=DC,∠B=∠C=45°,∴△ABD是等腰直角三角形,当P为AB的中点时,DP⊥AB,即∠APD=90°,又∵∠A=90°,∠PDQ=90°,∴四边形APDQ为矩形,又∵DP=AP=AB,∴矩形APDQ为正方形,故答案为AB的中点.【点睛】此题考查正方形的判定,等腰直角三角形,解题关键在于证明△ABD是等腰直角三角形18、六【解析】
设多边形有n条边,则内角和为180°(n-2),再根据内角和等于外角和2倍可得方程180(n-2)=360×2,再解方程即可.【详解】解:设多边形有n条边,由题意得:
180(n-2)=360×2,
解得:n=6,
故答案为:六.【点睛】本题考查多边形的内角和和外角和,关键是掌握内角和为180°(n-2).三、解答题(共66分)19、见解析;【解析】
连接BD交AC于点O,根据平行四边形的性质证明即可.【详解】连接BD交AC于点O.∵四边形ABCD是平行四边形,∴BO=OD,而BE=EF,∴OE∥DF,即AC∥EF.【点睛】本题考查了平行四边形的性质,关键是根据平行四边形的性质和三角形中位线定理解答.20、,.【解析】分析:首先将括号里面的分式进行通分,然后将分式的分子和分母进行因式分解,最后将除法改成乘法进行约分化简,最后选择a的值时,不能取a=2和a=±1.详解:原式=,当a=1时,原式=.点睛:本题主要考查的是分式的化简求值问题,属于基础题型.学会因式分解是解决分式问题的基本要求.21、(1);(2)【解析】
根据二次根式的运算法则,进行计算即可.【详解】(1)原式(2)原式===【点睛】此题主要考查二次根式的运算,熟练掌握,即可解题.22、(1)(1,0);(2);(3)存在点或或,使以点A、B、P、Q为顶点的四边形是平行四边形.【解析】
(1)通过解一元二次方程可求出OA的长,结合点A在x轴正半轴可得出点A的坐标;(2)连接CE,设OE=m,则AE=CE=1-m,在Rt△OCE中,利用勾股定理可求出m的值,进而可得出点E的坐标,同理可得出点D的坐标,根据点D,E的坐标,利用待定系数法可求出直线DE的解析式;(3)根据点A,C的坐标,利用待定系数法可求出直线AC的解析式,设点P的坐标为(a,2a-6),点Q的坐标为(c,-c+2),分AB为边和AB为对角线两种情况考虑:①当AB为边时,利用平行四边形的性质可得出关于a,c的二元一次方程组,解之可得出c值,再将其代入点Q的坐标中即可得出结论;②当AB为对角线时,利用平行四边形的对角线互相平分,可得出关于a,c的二元一次方程组,解之可得出c值,再将其代入点Q的坐标中即可得出结论.综上,此题得解.【详解】(1)解方程x2-12x+32=0,得:x1=2,x2=1.∵OA、OC的长是方程x2-12x+32=0的两个根,且OA>OC,点A在x轴正半轴上,∴点A的坐标为(1,0).(2)连接CE,如图2所示.由(1)可得:点C的坐标为(0,2),点B的坐标为(1,2).设OE=m,则AE=CE=1-m.在Rt△OCE中,∠COE=90°,OC=2,OE=m,∴CE2=OC2+OE2,即(1-m)2=22+m2,解得:m=3,∴OE=3,∴点E的坐标为(3,0).同理,可求出BD=3,∴点D的坐标为(5,2).设直线DE解析式为:∴∴直线DE解析式为:(3)∵点A的坐标为(1,0),点C的坐标为(0,2),点B的坐标为(1,2),∴直线AC的解析式为y=-x+2,AB=2.设点P的坐标为(a,2a-6),点Q的坐标为(c,-c+2).分两种情况考虑,如图5所示:①当AB为边时,,解得:c1=,c2=,∴点Q1的坐标为(,),点Q2的坐标为(,);②当AB为对角线时,,解得:,∴点Q3的坐标为(,-).综上,存在点或或,使以点A、B、P、Q为顶点的四边形是平行四边形【点睛】本题考查了解一元二次方程、矩形的性质、勾股定理、折叠的性质、待定系数法求一次函数解析式、一次函数图象上点的坐标特征、平行四边形的性质以及解二元一次方程组,解题的关键是:(1)通过解一元二次方程,找出点A的坐标;(2)利用勾股定理,求出点D,E的坐标;(3)分AB为边和AB为对角线两种情况,利用平行四边形的性质求出点Q的坐标.23、(1)y=﹣96x+192(0≤x≤2);(2)下午4时.【解析】试题分析:(1)可设线段AB所表示的函数关系式为:y=kx+b,根据待定系数法列方程组求解即可;(2)先根据速度=路程÷时间求出小明回家的速度,再根据时间=路程÷速度,列出算式计算即可求解.试题解析:(1)设线段AB所表示的函数关系式为:y=kx+b,依题意有:,解得.故线段AB所表示的函数关系式为:y=﹣96x+192(0≤x≤2);(2)12+3﹣(7+6.6)=15﹣13.6=1.4(小时),112÷1.4=80(千米/时),(192﹣112)÷80=80÷80=1(小时),3+1=4(时).答:他下午4时到家.考点:一次函数的应用.24、EF=5cm.【解析】
根据折叠的性质得到AF=AD,DE=EF,根据勾股定理计算即可.【详解】解:由折叠的性质可知,AF=AD=BC=10cm,在Rt△ABF中,BF===6(cm),∴FC=BC﹣BF=10﹣6=4(cm)设EF=xcm,则DE=EF=x,CE=8﹣x,在Rt△CEF中,EF2=CE2+FC2,即x2=(8﹣x)2+42,解得x=5,即EF=5cm.【点睛】本题考查的是翻转变换的性质,掌握翻转变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.25、(1)见解析;(2)结论仍然成立.理由见解析;(3)结论发生变化.EF=CF-BE.【解析】
(1)根据△ABC是等边三角形知道AB=AC,∠ABC=∠ACB=60°,而DB=DC,∠BDC=120°,这样可以得到△DCF和△BED是直角三角形,由于EF∥BC,可以证明△AEF是等边三角形,也可以证明△BDE≌△CDF,可以得到DE=DF,由此进一步得到
DE=DF∠BDE=∠CDF=30°,这样可以得到BE=DE=DF=CF,而△DEF是等边三角形,所以题目的结论就可以证明出来了;(2)结论仍然成立.如图,在AB的延长线上取点F’,使BF’=CF,连接DF’,根据(1)的结论可以证明△DCF≌△DBF’,根据全等三角形的性质可以得到DF=DF’,∠BDF’=∠CDF,又∠BDC=120°,∠EDF=60°,可以得到:∠EDF’=∠CDF=60°,由此可以证明△EDF’≌△EDF,从而证明题目的结论;(3)结论发生变化.EF=BE-CF.如图,在射线AB上取点F′,使BF′=CF,连接DF′.由(1)得△DCF≌△DBF′(SAS).根据全等三角形的性质可以得到DF=DF′,∠BDF′=∠CDF.又因为∠BDC=120°,∠EDF=60°,可以得到∠FDB+∠CDF=60°,∠FDB+∠BDF′=∠FDF′=120°,所以∠EDF′=∠EDF=60°,由此可得△EDF′≌△EDF(SAS),从而证明题目的结论EF=EF′=BF′-BE=CF-BE。【详解】(1)证明:∵△ABC是等边三角形,∴AB=AC,∠ABC=∠ACB=60°.∵DB=DC,∠BDC=120°,∴∠DBC=∠DCB=30°.∴∠DBE=∠DBC+∠ABC=90°,∠DCF=∠DCB+∠ACB=90°.∵EF∥BC,∴∠AEF=∠ABC=60°,∠AFE=∠ACB=60°.∴AE=AF.∴BE=AB-AE=AC-AF=CF.又∵DB=DC,∠DBE=∠DCF=90°,∴△BDE≌△CDF.∴DE=DF,∠BDE=∠CDF=(120°-60°)=30°.∴BE=DE=DF=CF.∵∠EDF=60°,∴△DEF是等边三角形,即DE=DF=EF.∴BE+CF=DE+DF=EF,即EF=BE+CF.(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 四年级有效学习方法训练与演讲稿
- 1 x照护理论考试题库及答案解析
- 基金从业考试题目组成及答案解析
- 工地安全员c证试题考试题库及答案解析
- 安全知识及常识测试题及答案解析
- 安全工程师化工题库及答案解析
- 护理学基础第十二章题库及答案解析
- 安全生产题库搜索及答案解析
- 信息安全等级评测师题库及答案解析
- 企业内部审计制度执行手册
- 犁底层重构施工方案
- 《工商管理专业导论》课件
- 心内科冠心病一病一品汇报
- “正大杯”第十五届全国大学生市场调查与分析大赛参考试题库(含答案)
- 《孕前优生培训》课件
- 《柳钢项目》课件
- 中考语文名著总复习-三年中考真题《红星照耀中国》(教师版)
- 北京市大兴区2024-2025学年八年级上学期期中语文试卷(含答案)
- 2024-2025学年天津市河西区新华中学高二(上)第一次月考数学试卷(含答案)
- 工程项目内部承包合同
- 企业信息咨询服务合同
评论
0/150
提交评论