




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.=()A.4 B.2 C.﹣2 D.±22.下列二次根式中,不是最简二次根式的是()A. B. C. D.3.在平面直角坐标系中,点P(1,-5)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.已知直线y=kx-4(k<0)与两坐标轴所围成的三角形面积等于4,则该直线的表达式为()A.y=-x-4 B.y=-2x-4 C.y=-3x+4 D.y=-3x-45.当x=-3时,二次根式6-x的值为()A.3 B.-3 C.±3 D.36.函数y=x+m与y=(m≠0)在同一坐标系内的图象可以是()A. B.C. D.7.如图,在菱形中,,的垂直平分线交对角线于点,为垂足,连结,则等于()A. B. C. D.8.已知一组数据45,51,54,52,45,44,则这组数据的众数、中位数分别为()A.45,48 B.44,45 C.45,51 D.52,539.下列式子中,属于最简二次根式的是A. B. C. D.10.如果一个三角形三条边的长分别是7,24,25,则这个三角形的最大内角的度数是()A.30° B.45° C.60° D.90°二、填空题(每小题3分,共24分)11.如果一个多边形的每个外角都等于,那么这个多边形的内角和是______度.12.函数与的图象如图所示,则的值为____.13.甲,乙两人进行飞镖比赛,每人各投1次,甲的成绩(单位:环)为:9,8,9,1,10,1.甲,乙两人平均成绩相等,乙成绩的方差为4,那么成绩较为稳定的是______.(填“甲”或“乙”)14.若是二次函数,则m=________
.15.如图,直线l1∶y=ax与直线l2∶y=kx+b交于点P,则不等式ax>kx+b的解集为_________.16.已知y与2x成正比例,且当x=1时y=4,则y关于x的函数解析式是__________.17.使式子的值为0,则a的值为_______.18.在设计人体雕像时,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,可以增加视觉美感.按此比例,如果雕像的高度为1m,那么它的下部应设计的高度为_____.三、解答题(共66分)19.(10分)计算:(1)(2)(3)(3+)(3﹣)(4)(﹣3)﹣2+﹣|1﹣2|﹣(﹣3)020.(6分)如图,已知中,,请用尺规作出AB边的高线请留作图痕迹,不写作法21.(6分)(1)计算:(2)22.(8分)已知关于x的方程x2-4x+3a-1=0(1)求实数a的取值范围;(2)若a为正整数,方程的根为a、β.求:a23.(8分)如图1,在正方形ABCD中,点E、F分别是边BC、AB上的点,且CE=BF.连结DE,过点E作EG⊥DE,使EG=DE,连结FG、FC(1)请判断:FG与CE的数量关系是________,位置关系是________
。(2)如图2,若点E、F分别是边CB、BA延长线上的点,其他条件不变,(1)中结论是否仍然成立?请作出判断并给予证明;(3)如图3,若点E、F分别是边BC、AB延长线上的点,其他条件不变,(1)中结论是否仍然成立?请直接写出你的判断。24.(8分)已知x=2+,求代数式的值.25.(10分)如图,菱形ABCD中,AB=1,∠A=60°,EFGH是矩形,矩形的顶点都在菱形的边上.设AE=AH=x(0<x<1),矩形的面积为S.(1)求S关于x的函数解析式;(2)当EFGH是正方形时,求S的值.26.(10分)如图,已知分别是△的边上的点,若,,.(1)请说明:△∽△;(2)若,求的长.
参考答案一、选择题(每小题3分,共30分)1、B【解析】
根据算术平方根,即可解答.【详解】==2,故选B.【点睛】本题考查了算术平方根,解决本题的关键是熟记算术平方根的定义.2、C【解析】
根据最简二次根式的定义对各选项分析判断即可.【详解】解:A、是最简二次根式,不合题意,故本选项错误;B、是最简二次根式,不合题意,故本选项错误;C、因为=2,所以不是最简二次根式,符合题意,故本选项正确;D、是最简二次根式,不合题意,故本选项错误;故选C.【点睛】本题考查了最简二次根式的定义,根据定义,最简二次根式必须满足被开方数不含分母且不含能开得尽方的因数或因式.3、D【解析】
根据各象限内点的坐标特征知点P(1,-5)在第四象限.故选D.4、B【解析】
先求出直线y=kx-1(k<0)与两坐标轴的交点坐标,然后根据三角形面积等于1,得到一个关于k的方程,求出此方程的解,即可得到直线的解析式.【详解】解:直线y=kx-1(k<0)与两坐标轴的交点坐标为(0,-1)(,0),
∵直线y=kx-1(k<0)与两坐标轴所围成的三角形面积等于1,
∴×(-)×1=1,解得k=-2,
则直线的解析式为y=-2x-1.
故选:B.【点睛】本题考查用待定系数法求一次函数的解析式.根据三角形面积公式及已知条件,列出方程,求出k的值,即得一次函数的解析式.5、A【解析】
把x=-3代入二次根式进行化简即可求解.【详解】解:当x=-3时,6-x=故选A.【点睛】本题考查了二次根式的计算,正确理解算术平方根的意义是关键.6、C【解析】
根据一次函数y=x+m的图象必过一、三象限,可判断出选项B、D不符合题意,然后针对A、C选项,先根据一次函数的性质判断出m取值,再根据反比例函数的性质判断出m的取值,二者一致的即为正确答案.【详解】一次函数y=x+m中,k=1>0,所以函数图象必过一、三象限,观察可知B、D选项不符合题意;A、由函数y=x+m的图象可知m<0,由函数y=的图象可知m>0,相矛盾,故错误;C、由函数y=x+m的图象可知m>0,由函数y=的图象可知m>0,正确,故选C.【点睛】本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.7、D【解析】
连接BF,根据菱形的对角线平分一组对角求出∠BAC,∠BCF=∠DCF,四条边都相等可得BC=DC,再根据菱形的邻角互补求出∠ABC,然后根据线段垂直平分线上的点到线段两端点的距离相等可得AF=BF,根据等边对等角求出∠ABF=∠BAC,从而求出∠CBF,再利用“边角边”证明△BCF和△DCF全等,根据全等三角形对应角相等可得∠CDF=∠CBF.【详解】解:如图,连接BF,在菱形ABCD中,∠BAC=∠BAD=×80°=40°,∠BCF=∠DCF,BC=DC,∠ABC=180°-∠BAD=180°-80°=100°,∵EF是线段AB的垂直平分线,∴AF=BF,∠ABF=∠BAC=40°,∴∠CBF=∠ABC-∠ABF=100°-40°=60°,∵在△BCF和△DCF中,,∴△BCF≌△DCF(SAS),∴∠CDF=∠CBF=60°,故选:D.【点睛】本题考查了菱形的性质,全等三角形的判定与性质,线段垂直平分线上的点到线段两端点的距离相等的性质,综合性强,但难度不大,熟记各性质是解题的关键.8、A【解析】
先把原数据按由小到大排列,然后根据众数、中位数的定义求解.【详解】数据从小到大排列为:44,45,45,51,52,54,所以这组数据的众数为45,中位数为×(45+51)=48,故选A.【点睛】本题考查了众数与中位数,熟练掌握众数与中位数的概念以及求解方法是解题的关键.一组数据中出现次数最多的数据叫做众数.一组数据按从小到大的顺序排列,位于最中间的数(或中间两个数的平均数)叫做这组数据的中位数.9、B【解析】
判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式是否同时满足,同时满足的就是最简二次根式,否则就不是.∵,∴属于最简二次根式.故选B.10、D【解析】
根据勾股定理逆定理可得此三角形是直角三角形,进而可得答案.【详解】解:∵72+242=252,∴此三角形是直角三角形,∴这个三角形的最大内角是90°,故选D.【点睛】此题主要考查了勾股定理逆定理,关键是掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.二、填空题(每小题3分,共24分)11、1260【解析】
首先根据外角和与外角和及每个外角的度数可得多边形的边数,再根据多边形内角和公式180(n-2)计算出答案.【详解】解:∵多边形的每一个外角都等于,∴它的边数为:,∴它的内角和:,故答案为:.【点睛】此题主要考查了多边形的内角和与外角和,根据多边形的外角和计算出多边形的边数是解题关键.12、1【解析】
将x=1代入可得交点纵坐标的值,再将交点坐标代入y=kx可得k.【详解】解:把x=1代入得:y=1,∴与的交点坐标为(1,1),
把x=1,y=1代入y=kx得k=1.
故答案是:1.【点睛】本题主要考查两条直线的交点问题,解题的关键是熟练掌握待定系数法求函数解析式.13、甲.【解析】
先计算出甲的平均数,再计算甲的方差,然后比较甲乙方差的大小可判定谁的成绩稳定.【详解】甲的平均数,所以甲的方差,因为甲的方差比乙的方差小,所以甲的成绩比较稳定.故答案为:甲.【点睛】本题考查方差的定义:一般地设n个数据,,,…,的平均数为,则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.14、-1.【解析】试题分析:根据二次函数的定义可知:,解得:,则m=-1.15、x>1;【解析】
观察图象,找出直线l1∶y=ax在直线l2∶y=kx+b上方部分的x的取值范围即可.【详解】∵直线l1∶y=ax与直线l2∶y=kx+b交于点P的横坐标为1,∴不等式ax>kx+b的解集为x>1,故答案为x>1.【点睛】本题考查了一次函数与一元一次不等式的关系,正确把握数形结合思想是解此类问题的关键.16、y=4x【解析】
根据y与1x成正比例,当x=1时,y=4,用待定系数法可求出函数关系式.【详解】解:设所求的函数解析式为:y=k•1x,
将x=1,y=4代入,得:4=k•1,
所以:k=1.
则y关于x的函数解析式是:y=4x.
故答案为:y=4x.【点睛】本题考查待定系数法求解析式,解题关键是根据已知条件,用待定系数法求得函数解析式k的值,写出y关于x的函数解析式.17、【解析】
根据分式值为0,分子为0,分母不为0解答即可.【详解】∵的值为0,∴2a-1=0,a+2≠0,∴a=.故答案为:【点睛】本题考查分式为0的条件,要使分式值为0,则分子为0,分母不为0;熟练掌握分式为0的条件是解题关键.18、【解析】
设雕像的下部高为xm,则上部长为(1-x)m,然后根据题意列出方程求解即可.【详解】解:设雕像的下部高为xm,则题意得:,整理得:,解得:或(舍去);∴它的下部应设计的高度为.故答案为:.【点睛】本题考查了黄金分割,解题的关键在于读懂题目信息并列出比例式,难度不大.三、解答题(共66分)19、(1)-;(2)5;(3)4;(5).【解析】
(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用完全平方公式和二次根式的乘法法则运算;(3)利用平方差公式计算;(4)根据负整数指数幂的意义、零指数幂的意义和绝对值的意义计算.【详解】解:(1)原式=2﹣2+﹣3=;(2)原式=2﹣2+3+6=5﹣2+2=5;(3)原式=9﹣5=4;(4)原式=+2+1﹣2﹣1=.【点睛】本题考查了二次根式的四则混合运算,掌握运算法则是解决本题的关键.20、作图见解析.【解析】
延长AB,以点C为圆心,大于点C到直线AB的距离的长为半径画弧,交AB的延长线于点M和点N,再作线段MN的垂直平分线CD即可.【详解】如图,延长AB,以点C为圆心,大于点C到直线AB的距离的长为半径画弧,交AB的延长线于点M和点N,分别以M、N为圆心,以大于MN一半长为半径画弧,两弧交于一点,过点C以及这点作直线,交MN于点D,则线段CD即为所求作的.【点睛】本题考查作图-基本作图,掌握作垂直平分线的基本步骤为解题关键.21、(1)3;(2)1.【解析】
(1)先进行二次根式的除法运算,然后把二次根式化为最简二次根式后合并即可;(2)利用平方差公式计算.【详解】(1)原式=3-2+=+2=3;(2)原式=49-48=1.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.22、(1)a≤5【解析】
(1)根据根判别式可得△=16-43a-1≥0;(2)因为a为正整数,又a≤53,所以a=1此时方程为【详解】解:(1)由△=16-43a-1≥0(2)因为a为正整数,又a≤53,所以a=1此时方程为x所以α=【点睛】考核知识点:根判别式,根与系数关系.理解相关知识即可.23、(1)FG=CE,FG∥CE;(2)详见解析;(3)成立,理由详见解析.【解析】
(1)构造辅助线后证明△HGE≌△CED,利用对应边相等求证四边形GHBF是矩形后,利用等量代换即可求出FG=CE,FG∥CE;
(2)构造辅助线后证明△HGE≌△CED,利用对应边相等求证四边形GHBF是矩形后,利用等量代换即可求出FG=CE,FG∥CE;
(3)证明△CBF≌△DCE,即可证明四边形CEGF是平行四边形,即可得出结论.【详解】(1)FG=CE,FG∥CE;理由如下:
过点G作GH⊥CB的延长线于点H,如图1所示:则GH∥BF,∠GHE=90°,
∵EG⊥DE,
∴∠GEH+∠DEC=90°,
∵∠GEH+∠HGE=90°,
∴∠DEC=∠HGE,
在△HGE与△CED中,,
∴△HGE≌△CED(AAS),
∴GH=CE,HE=CD,
∵CE=BF,
∴GH=BF,
∵GH∥BF,
∴四边形GHBF是矩形,
∴GF=BH,FG∥CH
∴FG∥CE,
∵四边形ABCD是正方形,
∴CD=BC,
∴HE=BC,
∴HE+EB=BC+EB,
∴BH=EC,
∴FG=EC;(2)FG=CE,FG∥CE仍然成立;理由如下:
过点G作GH⊥CB的延长线于点H,如图2所示:∵EG⊥DE,
∴∠GEH+∠DEC=90°,
∵∠GEH+∠HGE=90°,
∴∠DEC=∠HGE,
在△HGE与△CED中,,
∴△HGE≌△CED(AAS),
∴GH=CE,HE=CD,
∵CE=BF,∴GH=BF,
∵GH∥BF,
∴四边形GHBF是矩形,
∴GF=BH,FG∥CH
∴FG∥CE,
∵四边形ABCD是正方形,
∴CD=BC,
∴HE=BC,
∴HE+EB=BC+EB,
∴BH=EC,
∴FG=EC;
(3)FG=CE,FG∥CE仍然成立.理由如下:
∵四边形ABCD是正方形,
∴BC=CD,∠FBC=∠ECD=90°,
在△CBF与△DCE中,,
∴△CBF≌△DCE(SAS),
∴∠BCF=∠CDE,CF=DE,
∵EG=DE,∴CF=EG,
∵DE⊥EG
∴∠DEC+∠CEG=90°
∵∠CDE+∠DEC=90°
∴∠CDE=∠CEG,
∴∠BCF=∠CEG,
∴CF∥EG,
∴四边形CEGF平行四边形,
∴FG∥CE,FG=CE.【点睛】四边形综合题,考查了正方形的性质、全等三角形的判定与性质、平行四边形的判定与性质、矩形的判定与性质等知识.本题综合性强,有一定难度,解题的关键是利用全等三角形的对应边相等进行线段的等量代换,从而求证出平行四边形.24、【解析】
把代入代数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 学校棋类社团管理制度
- 创业人生考试题及答案
- 教师面试题库及答案
- 腺鳞癌的临床护理
- 公司委托股权转让协议书
- 医疗器械贴牌生产协议书
- 专业团体艺术演出协议书
- 店铺转让合同押金协议书
- 房屋解除购买合同范本
- 彩票店铺转让合同范本
- 8.1 法治国家 课件高中政治统编版必修三政治与法治
- 2024北京西城区初一(下)期末数学试题和答案
- 专题13 简单机械(测试)-中考物理一轮复习(解析版)
- 养老院九防知识培训
- 《紧固件 钢制紧固件氢脆基本原理》知识培训
- 餐饮企业财务流程解析
- 担保责任转移协议书(2篇)
- 供电公司新闻宣传工作培训
- 大学美育知到智慧树章节测试课后答案2024年秋德州学院
- DB37T-九小场所消防安全管理要求
- 【MOOC】兽医外科手术学-华中农业大学 中国大学慕课MOOC答案
评论
0/150
提交评论