2023届天津市部分区五区县八年级数学第二学期期末学业水平测试试题含解析_第1页
2023届天津市部分区五区县八年级数学第二学期期末学业水平测试试题含解析_第2页
2023届天津市部分区五区县八年级数学第二学期期末学业水平测试试题含解析_第3页
2023届天津市部分区五区县八年级数学第二学期期末学业水平测试试题含解析_第4页
2023届天津市部分区五区县八年级数学第二学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.化简的结果是()A.9 B.3 C.3 D.22.菱形ABCD的一条对角线长为6,边AB的长是方程x2-7x+12=0的一个根,则菱形ABCD的周长为()A.12 B.14 C.16 D.243.在函数y=x+3中,自变量x的取值范围是()A.x≤﹣3 B.x≥﹣3 C.x<﹣3 D.x>﹣34.如图,在中,,,点为上一点,,于点,点为的中点,连接,则的长为()A. B. C. D.5.如图,已知四边形ABCD的对角线AC⊥BD,则顺次连接四边形ABCD各边中点所得的四边形是()A.矩形 B.菱形 C.正方形 D.平行四边形6.如果直角三角形的边长为3,4,a,则a的值是()A.5 B.6 C. D.5或7.某商厦信誉楼女鞋专柜试销一种新款女鞋,一个月内销售情况如表所示型号2222.52323.52424.525数量(双)261115734经理最关心的是,哪种型号的鞋销量最大.对他来说,下列统计量中最重要的是()A.平均数 B.方差 C.中位数 D.众数8.生物学家发现了一种病毒,其长度约为,将数据0.00000032用科学记数法表示正确的是()A. B. C. D.9.一组数据共50个,分为6组,第1—4组的频数分别是5,7,8,10,第5组的频率是0.20,则第6组的频数是()A.10 B.11 C.12 D.1510.下列图象中,表示y是x的函数的是()A. B. C. D.11.一次函数y=x+2的图象与y轴的交点坐标为()A.(0,2) B.(0,﹣2) C.(2,0) D.(﹣2,0)12.如图,用一根绳子检查一个书架的侧边是否和上、下底都垂直,只需要用绳子分别测量比较书架的两条对角线就可以判断,其数学依据是()A.三个角都是直角的四边形是矩形B.对角线互相平分的四边形是平行四边形C.对角线相等的平行四边形是矩形D.对角线互相垂直平分的四边形是菱形二、填空题(每题4分,共24分)13.在△ABC中,若∠A,∠B满足|cosA-|+(sinB-)2=0,则∠C=_________.14.平行四边形ABCD中,∠A-∠B=20°,则∠A=______,∠B=_______.15.已知反比例函数y=的图像都过A(1,3)则m=______.16.如图,在四边形中,交于E,若,则的长是_____________17.将抛物线先向左平移个单位,再向下平移个单位,所得抛物线的解析式为______.18.如图,在菱形ABCD中,对角线AC,BD相交于点O,E为AB的中点,且OE=a,则菱形ABCD的周长为_____.三、解答题(共78分)19.(8分)甲、乙两地相距300千米,一辆货车和一辆轿车分别从甲地开往乙地(轿车的平均速度大于货车的平均速度),如图,线段OA、折线BCD分别表示两车离甲地的距离y(单位:千米)与时间x(单位:小时)之间的函数关系.(1)线段OA与折线BCD中,______(填线段OA或折线BCD)表示货车离甲地的距离y与时间x之间的函数关系.(2)求线段CD的函数关系式(标出自变量x取值范围);(3)货车出发多长时间两车相遇?20.(8分)观摩、学习是我们生活的一部分,而在观摩中与展览品保持一定的距离是一种文明的表现.某学校数学业余学习小组在平面直角坐标系xOy有关研讨中,将到线段PQ所在的直线距离为的直线,称为直线PQ的“观察线”,并称观察线上到P、Q两点距离和最小的点L为线段PQ的“最佳观察点”.(1)如果P(1,),Q(4,),那么在点A(1,0),B(,2),C(,3)中,处在直线PQ的“观察线”上的是点;(2)求直线y=x的“观察线”的表达式;(3)若M(0,﹣1),N在第二象限,且MN=6,当MN的一个“最佳观察点”在y轴正半轴上时,直接写出点N的坐标;并按逆时针方向联结M、N及其所有“最佳观察点”,直接写出联结所围成的多边形的周长和面积.21.(8分)(1)如图1,将一矩形纸片ABCD沿着EF折叠,CE交AF于点G,过点G作GH∥EF,交线段BE于点H.①判断EG与EH是否相等,并说明理由.②判断GH是否平分∠AGE,并说明理由.(2)如图2,如果将(1)中的已知条件改为折叠三角形纸片ABC,其它条件不变.①判断EG与EH是否相等,并说明理由.②判断GH是否平分∠AGE,如果平分,请说明理由;如果不平分,请用等式表示∠EGH,∠AGH与∠C的数量关系,并说明理由.22.(10分)今年5月19日为第29个“全国助残日”.我市某中学组织了献爱心捐款活动,该校数学课外活动小组对本次捐款活动做了一次抽样调查,并绘制了如下不完整的频数分布表和频数分布直方图(每组含前一个边界,不含后一个边界).(1)填空:_________,_________.(2)补全频数分布直方图.(3)该校有2000名学生,估计这次活动中爱心捐款额在的学生人数.23.(10分)电力公司为鼓励市民节约用电,采取按月电量分段收费的办法,已知某户居民每月应缴电费(元)与用电量(度)的函数图象是一条折线(如图),根据图象解答下列问题.(1)求出当时,与之间的函数关系式;(2)若该用户某月用电度,则应缴费多少元?24.(10分)如图,在平行四边形ABCD中,点M为边AD的中点,过点C作AB的垂线交AB于点E,连接ME,已知AM=2AE=4,∠BCE=30°.(1)求平行四边形ABCD的面积;(2)求证:∠EMC=2∠AEM.25.(12分)计算:,26.如图,在中,,请用尺规过点作直线,使其将分割成两个等腰三角形.(保留作图痕迹,不写作法.并把作图痕迹用黑色签字笔加黑).

参考答案一、选择题(每题4分,共48分)1、B【解析】

先进行二次根式的化简,再进行二次根式的除法运算求解即可.【详解】解:=1÷=1.故选:B.【点睛】本题考查了二次根式的乘除法,解答本题的关键在于熟练掌握该知识点的运算法则.2、C【解析】试题解析:∵解方程x2-7x+12=0

得:x=3或1

∵对角线长为6,3+3=6,不能构成三角形;

∴菱形的边长为1.

∴菱形ABCD的周长为1×1=2.故选C.3、B【解析】

根据二次根式有意义的条件列出不等式即可.【详解】解:根据题意得:x+3≥0解得:x≥-3所以B选项是正确的.【点睛】本题考查二次根式及不等式知识,解题时只需找出函数有意义必须满足的条件列出不等式即可,对于一些较复杂的函数一定要仔细.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.4、B【解析】

先证明Rt△BDE≌Rt△BCE(HL),得到点E是DC的中点,进而得出EF是△ADC的中位线,再根据已知数据即可得出EF的长度.【详解】解:∵,∴∠BED=∠BEC在Rt△BDE与Rt△BCE中∴Rt△BDE≌Rt△BCE(HL)∴DE=CE∴点E是CD的中点,又∵点F是AC的中点,∴EF是△ADC的中位线,∴∵,,,∴AD=AB-BC=4∴EF=2故答案为:B.【点睛】本题考查了全等三角形的证明及中位线的应用,解题的关键是得到EF是△ADC的中位线,并熟知中位线的性质.5、A【解析】试题分析:如图:∵E、F、G、H分别是边AD、AB、BC、CD的中点,∴EF∥BD,GH∥BD,EF=BD,GH=BD,EH=AC,∴EF∥GH,EF=GH,∴四边形EFGH是平行四边形,∵AC=BD,EF=BD,EH=AC,∴EF=EH,∴平行四边形EFGH是菱形.故选B.考点:1.三角形中位线定理;2.菱形的判定.6、D【解析】

分两种情况分析:a是斜边或直角边,根据勾股定理可得.【详解】解:当a是斜边时,a=;当a是直角边时,a=所以,a的值是5或故选:D.【点睛】本题考核知识点:勾股定理,解题关键点:分两种情况分析.7、D【解析】

根据众数的定义:一组数据中出现次数最多的数值,即可得解.【详解】根据题意,销量最大,即为众数,故答案为D.【点睛】此题主要考查对众数的理解运用,熟练掌握,即可解题.8、B【解析】

绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.00000032=3.2×10-1.故选:B.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.9、A【解析】首先根据频数=总数×频率,求得第五组频数;再根据各组的频数和等于总数,求得第六组的频数:根据题意,得第五组频数是50×0.2=1,故第六组的频数是50-5-7-8-1-1=1.故选A.10、C【解析】

函数就是在一个变化过程中有两个变量x,y,当给x一个值时,y有唯一的值与其对应,就说y是x的函数,x是自变量.注意“y有唯一的值与其对应”对图象的影响.【详解】解:根据函数的定义可知,每给定自变量x一个值都有唯一的函数值y相对应,所以A.B.D错误.故选C.【点睛】本题考查了函数的概念,牢牢掌握函数的概念是解答本题的关键.11、A【解析】分析:在解析式中,令y=0,即可求得与x轴交点的坐标了.详解:当y=0时,x+2=0,解得x=−2,所以一次函数的图象与x轴的交点坐标为(−2,0).故选D.点睛:本题考查了一次函数图像上点的坐标特征.解题的关键点:与x轴的交点即纵坐标为零.12、C【解析】

根据矩形的判定定理:对角线相等的平行四边形是矩形即可判定.【详解】解:这种做法的依据是对角线相等的平行四边形为矩形,故选:C.【点睛】本题主要考查对矩形的性质和判定的理解和掌握,能熟练地运用矩形的性质解决实际问题是解此题的关键.二、填空题(每题4分,共24分)13、75°【解析】【分析】根据绝对值及偶次方的非负性,可得出cosA及sinB的值,从而得出∠A及∠B的度数,利用三角形的内角和定理可得出∠C的度数.【详解】∵|cosA-|+(sinB-)2=0,∴cosA=,sinB=,∴∠A=60°,∠B=45°,∴∠C=180°-∠A-∠B=75°,故答案为:75°.【点睛】本题考查了特殊角的三角函数值及非负数的性质,解答本题的关键是得出cosA及sinB的值,另外要求我们熟练掌握一些特殊角的三角函数值.14、100°,80°【解析】

根据平行四边形的性质得出AD∥BC,求出∠A+∠B=180°,解方程组求出答案即可.【详解】解:∵四边形ABCD是平行四边形,

∴AD∥BC,

∴∠A+∠B=180°,

∵∠A-∠B=20°,

∴∠A=100°,∠B=80°,

故答案为:100°,80°.【点睛】本题考查了平行四边形的性质,能根据平行线得出∠A+∠B=180°是解此题的关键,注意:平行四边形的对边平行.15、1.【解析】

把点A(1,1)代入函解析式即可求出m的值.【详解】解:把点A(1,1)代入函解析式得1=,解得m=1.

故答案为:1.【点睛】本题考查反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解题的关键.16、【解析】

过点A作AM⊥BD于M,先证明△AEM≌△BEC,得出AM=BC,BE=ME,再根据得出三角形ADM是等腰直角三角形,从而得出AM=BC,结合已知和勾股定理得出DB和BC的长即可【详解】过点A作AM⊥BD于M,则∵∴∵EA=EC,∴∴AM=BC,BE=ME∵则设EB=2k,ED=5k∴EM=2k,DM=3k∵,∴AM=DM=BC=3k,BM=4k则AB=5k=5,k=1∴DB=7,BC=3∵∴DC=故答案为:【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的性质与判定,以及勾股定理,熟练掌握相关知识是解题的关键17、【解析】

二次函数图象平移规律:“上加下减,左加右减”,据此求解即可.【详解】将抛物线先向左平移个单位,再向下平移个单位后的解析式为:,故答案为.18、8a.【解析】

由菱形的性质易得AC⊥BD,由此可得∠AOB=90°,结合点E是AB边上的中点可得AB=2OE=a,再结合菱形的四边相等即可求得菱形ABCD的周长为8a.【详解】解:∵四边形ABCD是菱形,∴AB=BC=CD=AD,AC⊥BD,∴∠AOB=90°,又∵点E为AB边上的中点,OE=a,∴AB=2OE=2a,∴菱形ABCD的周长=2a×4=8a.故答案为:8a.【点睛】“由菱形的性质得到AC⊥BD,从而得到∠AOB=90°,结合点E是AB边上的中点,得到AB=2OE=2a”是正确解答本题的关键.三、解答题(共78分)19、(1)OA;(2)y=110x−195(2.5≤x≤4.5);(3)3.9小时.【解析】

(1)根据题意可以分别求得两个图象中相应函数对应的速度,从而可以解答本题;(2)设CD段的函数解析式为y=kx+b,将C(2.5,80),D(4.5,300)两点的坐标代入,运用待定系数法即可求解;(3)根据题意可以求得OA对应的函数解析式,从而可以解答本题.【详解】(1)线段OA表示货车货车离甲地的距离y与时间x之间的函数关系,理由:vOA=3005=60(千米/时),v∵60<901011∴线段OA表示货车离甲地的距离y与时间x之间的函数关系.故答案为:OA;(2)设CD段函数解析式为y=kx+b(k≠0)(2.5≤x≤4.5).∵C(2.5,80),D(4.5,300)在其图象上,∴2.5k解得k∴CD段函数解析式:y=110x−195(2.5≤x≤4.5);(3)设线段OA对应的函数解析式为y=kx,300=5k,得k=60,即线段OA对应的函数解析式为y=60x,y=60x即货车出发3.9小时两车相遇.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.20、(1)A,B;(1)直线y=x的“观察线”的解析式为y=x﹣1或y=x+1;(3)围成的图形是菱形MQNQ′,这个菱形的周长8,这个菱形的面积6.【解析】

(1)由题意线段PQ的“观察线”的解析式为y=0或y=1,由此即可判断;

(1)如图1中,设直线的下方的“观察线”MN交y轴于K,作KE⊥直线,求出直线MN的解析式,再根据对称性求出直线的上方的“观察线”PQ即可;

(3)如图3中,设点Q是MN的一个“最佳观察点”,点P是MN的中点.解直角三角形求出点P坐标,再根据中点坐标公式求出等N坐标;观察图象可知:设此时的另一个“最佳观察点”为Q′,按逆时针方向联结M、N及其所有“最佳观察点”,所围成的图形是菱形MQNQ′,这个菱形的周长=8,这个菱形的面积==×6×1=6.【详解】(1)如图1中,由题意线段PQ的“观察线”的解析式为y=0或y=1,∵点A在直线y=0上,点B在直线y=1上,∴点A,点B是直线PQ的“观察线”上的点,故答案为A,B.(1)如图1中,设直线y=x的下方的“观察线”MN交y轴于K,作KE⊥直线y=x,由题意:EK=,∵直线y=x与x轴的夹角为30°,∴∠EOK=60°,∴∠EKO=30°,∴tan30°==,∴OE=1,∴OK=1OE=1,∵MN∥直线y=x,∴直线MN的解析式为y=x﹣1,根据对称性可知在直线y=x上方的“观察线”PQ的解析式为y=x+1.综上所述,直线y=x的“观察线”的解析式为y=x﹣1或y=x+1.(3)如图3中,设点Q是MN的一个“最佳观察点”,点P是MN的中点.当点Q在y轴的正半轴上时,连接PQ,则PQ垂直平分线线段MN.在Rt△PQM中,PQ=,PM=3,∴MQ==1,∵M(0,﹣1),OQ=1﹣1,作PH⊥y轴于H.在Rt△PQH中,∵tan∠PQH==,∴∠PQH=60°,∴∠QPH=30°,∴QH=PQ=,PH=QH=,∴OH=1﹣1﹣=﹣1,∴P(﹣,﹣1),∵PN=PM,∴N(﹣3,3﹣1).观察图象可知:设此时的另一个“最佳观察点”为Q′,按逆时针方向联结M、N及其所有“最佳观察点”,所围成的图形是菱形MQNQ′,这个菱形的周=8,这个菱形的面积=×6×1=6.【点睛】本题考查一次函数综合题、点到直线的距离、轨迹、解直角三角形等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,学会添加常用辅助线,构造直角三角形解决问题.21、(1)①EG=EH,理由详见解析;②GH平分∠AGE,理由详见解析;(2)①EG=EH,理由详见解析;②∠AGH=∠HGE+∠C,理由详见解析.【解析】

(1)①由题意可证四边形GHEF是平行四边形,可得∠GHE=∠GFE,由折叠的性质和平行线的性质可证∠GEF=∠HGE,可得结论;②由平行线的性质可得∠AGH=∠GHE=∠HGE,即可得结论;(2)①由折叠的性质可得∠CEF=∠C'EF,∠C=∠C',由平行线的性质可得结论;②∠AGH=∠HGE+∠C,由三角形的外角性质可得结论.【详解】(1)①EG=EH,理由如下:如图,∵四边形ABCD是矩形∴AD∥BC∴AF∥BE,且GH∥EF∴四边形GHEF是平行四边形∴∠GHE=∠GFE∵将一矩形纸片ABCD沿着EF折叠,∴∠1=∠GEF∵AF∥BE,GH∥EF∴∠1=∠GFE,∠HGE=∠GEF∴∠GEF=∠HGE∴∠GHE=∠HGE∴HE=GE②GH平分∠AGE理由如下:∵AF∥BE∴∠AGH=∠GHE,且∠GHE=∠HGE∴∠AGH=∠HGE∴GH平分∠AGE(2)①EG=EH理由如下,如图,∵将△ABC沿EF折叠∴∠CEF=∠C'EF,∠C=∠C'∵GH∥EF∴∠GEF=∠HGE,∠FEC'=∠GHE∴∠GHE=∠HGE∴EG=EH②∠AGH=∠HGE+∠C理由如下:∵∠AGH=∠GHE+∠C'∴∠AGH=∠HGE+∠C【点睛】本题是四边形综合题,考查了矩形的性质,折叠的性质,平行线的性质,平行四边形的判定和性质,熟练运用这些性质进行推理是本题的关键.22、(1),.(2)补图见解析;(3)1200人.【解析】

(1)先根据5≤x<l0的频数及其百分比求出样本容量,再根据各组频数之和等于总人数求出a的值,继而由百分比的概念求解可得;(2)根据所求数据补全图形即可得;(3)利用样本估计总体思想求解可得.【详解】解:(1)∵样本容量为3÷7.5%=40,∴a=40-(3+7+10+6)=14,则b=14÷40×100%=35%,故答案为:14,35%;(2)补图如下.(3)估计这次活动中爱心捐款额在15≤x<25的学生人数约为,2000×(35%+25%)=1200(人).答:估计这次活动中爱心捐款额在的学生有1200人.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.23、(1);(2)用电度,应缴费元【解析】

(1)本题考查的是分段函数的知识.依题意可以列出函数关系式;

(2)根据(1)中的函数解析式以及图标即可解答.【详解】解:(1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论