版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.集合与简易逻辑。分值在5~10分左右(一道或两道选择题),考查的重点是抽象思维能力,主要考查集合与集合的运算关系,将加强对集合的计算与化简的考查,并有可能从有限集合向无限集合发展。简易逻辑多为考查“充分与必要条件”及命题真伪的判别。2.函数与导数,函数是高中数学的主要内容,它把中学数学的各个分支紧密地联系在一起,是中学数学全部内容的主线。在高考中,至少三个小题一个大题,分值在30分左右。以指数函数、对数函数、生成性函数为载体结合图象的变换(平移、伸缩、对称变换)、四性问题(单调性、奇偶性、周期性、对称性)、反函数问题常常是选择题、填空题考查的主要内容,其中函数的单调性和奇偶性有向抽象函数发展的趋势。函数与导数的结合是高考的热点题型,文科以三次(或四次)函数为命题载体,理科以生成性函数(对数函数、指数函数及分式函数)为命题载体,以切线问题、极值最值问题、单调性问题、恒成立问题为设置条件,与不等式、数列综合成题,是解答题试题的主要特点。3.不等式;一般不会单独命题,会在其他题型中“隐蔽”出现,分值一般在10左右。不等式作为一种工具广泛地应用在涉及函数、数列、解几等知识的考查中,不等式重点考五种题型:解不等式(组);证明不等式;比较大小;不等式的应用;不等式的综合性问题。选择题和填空题主要考查不等式性质、解法及均值不等式。解答题会与其它知识的交汇中考查,如含参量不等式的解法(确定取值范围)、数列通项或前n项和的有界性证明、由函数的导数确定最值型的不等式证明等。4.数列:数列是高中数学的重要内容,又是初等数学与高等数学的重要衔接点,所以在历年的高考解答题中都占有重要的地位.题量一般是一个小题一个大题,有时还有一个与其它知识的综合题。分值在20分左右,文科以应用等差、等比数列的概念、性质求通项公式、前n项和为主;理科以应用Sn或an之间的递推关系求通项、求和、证明有关性质为主。数列是特殊的函数,而不等式是深刻认识函数与数列的工具,三者综合的求解题与求证题是对基础知识和基础能力的双重检验,是高考命题的新热点。5.三角函数:分值在20分左右(两小一大)。三角函数考题大致为以下几类:一是三角函数的恒等变形,即应用同角变换和诱导公式,两角和差公式,二倍角公式,求三角函数值及化简、证明等问题;二是三角函数的图象和性质,即图像的平移、伸缩变换与对称变换、画图与视图,与单调性、周期性和对称性、最值有关的问题;三是三角形中的三角问题.高考对这部分内容的命题有如下趋势:低了对三角变形的要求,加强了对三角函数的图象和性质的考察.⑵多是基础题,难度属中档偏易.⑶强调三角函数的工具性,加强了三角函数与其他知识的综合,如与向量知识、三角形问题、解析几何、立体几何的综合。以三角形为载体,以三角函数为核心,以正余弦公式为主体,考查三角变换及其应用的能力,已成为考试热点。6.向量:分值在10分左右,一般有一道小题的纯向量题,另外在函数、三角、解析几何与立体几何中均可能结合出题。向量是新增的重点内容,它融代数特征和几何特征于一体,能与三角函数、函数、解析几何、立体几何自然交汇、亲密接触。在处理位置关系、长度、夹角计算上都有优势,向量作为代数与几何的纽带,理应发挥其坐标运算与动点轨迹、曲线方程等综合方面的工具性功能,因此加大对向量的考查力度,充分体现向量的工具价值和思维价值,应该是今后高考命题的发展趋势。向量和平面几何的结合是高考选择、填空题的命题亮点,向量不再停留在问题的直接表达水平上,而与解析几何、函数、三角等知识有机结合将成为一种趋势,会逐渐增加其综合程度。7.立体几何:分值在22分左右(两小一大),两小题以基本位置关系的判定与柱、锥、球的角、距离、体积计算为主,一大题以证明空间线面的位置关系和有关数量关系计算为主,诸如空间线面平行、垂直的判定与证明,线面角和距离的计算。试题的命制载体可能趋向于不规则几何体,但仍以“方便建系”为原则。8.解析几何:课本第七章直线与圆的方程、第八章圆锥曲线统称为解析几何,高考对解析几何的考查一般是三个小题一个大题,所占分值约30分。其规律是线性规划、直线与圆各一个小题,涉及圆锥曲线的图形、定义或简单几何性质的问题一个小题,直线与圆锥曲线的综合问题一个大题。解析几何的重点仍然是圆锥曲线的性质,包括:直线的倾斜角、斜率、距离、平行垂直、点对称、直线对称、线性规划有关问题等等。直线和圆锥曲线的位置关系以及轨迹问题,仍然以考查方程思想及用韦达定理处理弦长和弦中点为重点。坐标法使平面向量与平面解析几何自然地联系并有机结合起来。相关交汇试题应运而生,涉及圆锥曲线参数的取值范围问题也是命题亮点。9.排列、组合、二项式定理、概率统计:分值在22分左右(两小一大),排列组合与二项式定理一般各一个小题,大题理科以概率统计、文科以求概率的应用题为主,分值超过其所占课时的比重。这部分考查内容包括:二项式定理及运用;排列与组合;概率与统计。在解答题中,排列、组合与概率是重点。其考查方式以排列组合为基础,着重考查学生应用概率知识解决实际问题的能力。理科考查重点为随机变量的分布列及数学期望;文科以等可能事件、互斥事件、相互独立事件的概率求法为主。特别要引起注意是以“正态分布”相关内容为题材,文科卷以“抽样”相关内容为题材设计试题平面向量1、向量:既有大小,又有方向的量。向量不能比较大小,只可以判断是否相等,向量的模可以比较大小。数量:只有大小,没有方向的量。数量可以比较大小,也可以判断是否相等。2、有向线段的三要素:起点、方向、长度.起点的选择是任意的,对于模相等且方向相同的两个向量,无论他们的起点在哪里,都认为这两个向量相等。零向量:长度为的向量.单位向量:长度等于个单位的向量.平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行.相等向量:长度相等且方向相同的向量.3、向量既有代数特征又有几何特征,可以起到数形结合的作用。4、向量加法运算:=1\*GB2⑴三角形法则的特点:首尾相连.=2\*GB2⑵平行四边形法则的特点:共起点.=3\*GB2⑶三角形不等式:.=4\*GB2⑷运算性质:=1\*GB3①交换律:;=2\*GB3②结合律:;=3\*GB3③.=5\*GB2⑸坐标运算(坐标加减):设,,则.5、向量减法运算:=1\*GB2⑴三角形法则的特点:共起点,连终点,方向指向被减向量.=2\*GB2⑵坐标运算:设,,则.设、两点的坐标分别为,,则.6、向量数乘运算:=1\*GB2⑴实数与向量的积是一个向量的运算叫做向量的数乘,记作.=1\*GB3①;=2\*GB3②当时,的方向与的方向相同;当时,的方向与的方向相反;当时,.=2\*GB2⑵运算律:=1\*GB3①;=2\*GB3②;=3\*GB3③.=3\*GB2⑶坐标运算:设,则.【向量相等,坐标相同;向量的坐标与表示该向量的有向线段的始点、终点的具体位置无关,只与其相对位置有关】7、向量共线定理:向量与共线,当且仅当有唯一一个实数,使.设,,其中,则当且仅当时,向量、共线.[练习]设a,b是两个不共线的向量,,若A,B,D三点共线,则实数p的值是对于(均为实数),若A,B,C三点共线,则,反之仍然成立。[练习]如图所示,在中,点O是BC的中点,过点O的直线分别交直线AB,AC于不同的两点M,N,若,则m+n的值为8、平面向量基本定理:如果、是同一平面内的两个不共线向量,那么对于这一平面内的任意向量,有且只有一对实数、,使.(不共线的向量、作为这一平面内所有向量的一组基底)[练习]在下列向量组中,可以把向量a=(3,2)表示出来的是A,e1=(0,0),e2=(1,2)B,e1=(-1,2),e2=(5,-2)C,e1=(3,5),e2=(6,10)D,e1=(2,-3),e2=(-2,3)【解题】用已知向量表示另外一些向量,除了利用向量加减法和数乘运算外,还充分利用平面几何的一些定理。在求向量时要尽可能的转化到平行四边形或三角形中。常要用到相似三角形对应边成比例,三角形中位线等平面几何的性质。[练习]在中,点M,N满足,则x=,y=2、如图,已知平面内有三个向量,其中的夹角为120度,的夹角为30度,且,则的值为9、分点坐标公式:设点是线段上的一点,、的坐标分别是,,当时,点的坐标是.(当10、平面向量的数量积:=1\*GB2⑴.零向量与任一向量的数量积为.的几何意义:等于的长度与在的方向上的投影的乘积[练习]已知点A(-1,1),B(1,2),C(-2,-1),D(3,4),则向量方向上的投影为=2\*GB2⑵性质:设和都是非零向量=1\*GB3①=2\*GB3②当与同向时,;当与反向时,;或=3\*GB3③.两向量夹角的范围为,求夹角时一定要注意两向量夹角的范围[练习]若非零向量a,b满足,则a与b的夹角为=3\*GB2⑶运算律:=1\*GB3①;=2\*GB3②;=3\*GB3③.=4\*GB2⑷坐标运算:设两个非零向量,,则.若,则,或.设,,则.设、都是非零向量,,,是与的夹角,则.[练习]1、平面向量,且c与a的夹角等于c与b的夹角,则m=A,-2B,-1C,1D,2在平行四边形ABCD中,AD=1,角BAD=60度,E为CD的重点,若,则AB的长为解三角形1、(1)正弦定理:在中,、、分别为角、、的对边,,则有(为的外接圆的半径)(2)正弦定理的变形公式:=1\*GB3①,,;=2\*GB3②,,;=3\*GB3③;(3)正弦定理的应用:=1\*GB3①已知两角和任一边,求另一角和其他两条边[练习]在△ABC中,A=60°,B=75°,a=10,则c等于().A.5eq\r(2)B.10eq\r(2)C.eq\f(10\r(6),3)D.5eq\r(6)=2\*GB3②已知两边和其中一边的对角,求另一边和其他两角【注意】在中,已知a,b和A,利用正弦定理解三角形时,会出现解不确定的情况,一般可根据三角形中“大边对大角,三角形内角和定理”来取舍,具体情况如下A为锐角A为钝角或直角图形关系式a<bsinAa=bsinAbsinA<a<ba≥ba>ba≤b解的个数无解一解两解一解一解无解3、三角形面积公式:.4、余弦定理:在中,有推论:应用:已知三边,求各角已知两边和他们的夹角,求第三边和其他两角[练习]在△ABC中,a=3,b=1,c=2,则A等于().A.30°B.45°C.60°D.75°5、三角形中常用结论在中,角A,B,C所对的边分别是a,b,c,常见的结论有A+B+C=π在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC中,A>B⇔a>b⇔sinA>sinB.常用三角恒等式:sin(A+B)=sin(C);cos(A+B)=-cos(C);tan(A+B)=-tan(C)[练习]1、的内角A,B,C所对的边分别为a,b,c若a,b,c成等差数列,证明sinA+sinC=2sin(A+C)若a,b,c成等比数列,求cosB的最小值6、三角形形状的判定,利用正余弦定理把已知条件转化为三角形的三角函数关系或者边边关系再进行下一步求解[练习]1、在中,角A,B,C所对的边分别为a,b,c,若直线bx+ycosA+cosB=0与ax+ycosB+cosA=0平行,则一定是()A,锐角三角形B,等腰三角形C,直角三角形D,等腰或者直角三角形2、在△ABC中,若eq\f(a,cosA)=eq\f(b,cosB)=eq\f(c,cosC);则△ABC是().A.直角三角形 B.等边三角形C.钝角三角形 D.等腰直角三角形7、三角形的面积公式的选择(1)已知三角形一边及该边上的高,利用(2)已知三角形的两边及其夹角,利用(3)已知三角形的三边,利用[练习]1、在△ABC中,a=3eq\r(2),b=2eq\r(3),cosC=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 基于学生兴趣的初中合唱团梯队建设与教学策略探索教学研究课题报告
- 2026年网络在线学法普法考试题库及答案【必刷】
- 《文化产业与科技融合创新生态系统的可持续发展研究》教学研究课题报告
- 湖北省孝感市事业单位人才引进秋季校园招聘879备考题库新版
- 2025年榆林市横山区南塔卫生院招聘备考题库附答案
- 江苏省扬州市邗江区黄珏中学2013年八年级数学暑假作业(8)及答案
- 江苏省靖江外国语学校中考数学一轮复习 解直角三角形
- 2026年二级注册建筑师之建筑结构与设备考试题库500道含完整答案(各地真题)
- 2026年投资项目管理师之投资建设项目决策考试题库200道【夺冠系列】
- 2026年一级建造师之一建建设工程经济考试题库附参考答案【黄金题型】
- 贵州国企招聘:2025贵州锦麟化工有限责任公司第三次招聘7人考试题库附答案
- 2026陕西西安市延长石油(集团)有限责任公司高校毕业生招聘(公共基础知识)综合能力测试题附答案解析
- 2025甘肃省水务投资集团有限公司招聘企业管理人员笔试考试参考题库及答案解析
- 美容店退股合同协议书
- 2025年秋苏科版(新教材)小学劳动技术三年级上学期期末质量检测卷附答案
- 2025-2026学年高一化学上学期第三次月考卷(人教版必修第一册)(试卷及全解全析)
- 四川省名校联盟2024-2025学年高二上学期期末联考物理试题含答案2024-2025学年度上期高二期末联考物理试题
- 卫生间隔断定制工程合同(3篇)
- 湖北楚禹水务科技有限公司招聘笔试题库2025
- 雨课堂学堂云在线《习语“金”典百句百讲(西北师大 )》单元测试考核答案
- 三叉神经成像课件
评论
0/150
提交评论