2023年辽宁省盘锦市双台子区第一中学八年级数学第二学期期末统考试题含解析_第1页
2023年辽宁省盘锦市双台子区第一中学八年级数学第二学期期末统考试题含解析_第2页
2023年辽宁省盘锦市双台子区第一中学八年级数学第二学期期末统考试题含解析_第3页
2023年辽宁省盘锦市双台子区第一中学八年级数学第二学期期末统考试题含解析_第4页
2023年辽宁省盘锦市双台子区第一中学八年级数学第二学期期末统考试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.(1)中共有1个小正方体,其中一个看的见,0个看不见;(2)中共有8个小正方体,其中7个看得见,一个看不见;(3)中共有27个小正方体,其中19个看得见,8个看不见;…,则第(5)个图中,看得见的小正方体有()个.A.100 B.84 C.64 D.612.如图,点O在ABC内,且到三边的距离相等,若∠A=60°,则∠BOC的大小为()A.135° B.120° C.90° D.60°3.某青年排球队12名队员的年龄情况如下表所示:这12名队员的平均年龄是()A.18岁 B.19岁 C.20岁 D.21岁4.已知正比例函数,且随的增大而减小,则的取值范围是()A. B. C. D.5.一个口袋中装有3个绿球,2个黄球,每个球除颜色外其它都相同,搅均后随机地从中摸出两个球都是绿球的概率是()A. B. C. D.6.在直角三角形中,自锐角顶点所引的两条中线长为和,那么这个直角三角形的斜边长为()A.6 B.7 C.2 D.27.如图,已知P为正方形ABCD外的一点,PA=1,PB=2,将△ABP绕点B顺时针旋转90°,使点P旋转至点P′,且AP′=3,则∠BP′C的度数为()A.105° B.112.5° C.120° D.135°8.把中根号外的(a-1)移入根号内,结果是()A. B. C. D.9.下列计算错误的是()A.+= B.×= C.÷=3 D.(2)2=810.直角三角形的两条直角边长分别为a和b,斜边长为c,已知c=13,b=5,则a=()A.1 B.5 C.12 D.25二、填空题(每小题3分,共24分)11.多项式因式分解后有一个因式为,则的值为_____.12.如图,等边△AOB中,点B在x轴正半轴上,点A坐标为(1,),将△AOB绕点O顺时针旋转15°,此时点A对应点A′的坐标是_____.13.在中,,,,则斜边上的高为________.14.一元二次方程x2﹣x=0的根是_____.15.一组数据按从小到大顺序排列为:3,5,7,8,8,则这组数据的中位数是,众数是.16.某公司招聘英语翻译,听、说、写成绩按3∶3∶2计入总成绩.某应聘者的听、说、写成绩分别为80分,90分,95分(单项成绩和总成绩满分均为百分制),则他的总成绩为____________分.17.若关于x的一元二次方程有两个不相等的实数根,则m的取值范围________18.在△ABC中,∠C=90°,AB=10,其余两边长是两个相邻的偶数,则这个三角形的周长为_____.三、解答题(共66分)19.(10分)先化简,再求值:,其中x=.20.(6分)学校开展“书香校园,诵读经典”活动,随机抽查了部分学生,对他们每天的课外阅读时长进行统计,并将结果分为四类:设每天阅读时长为t分钟,当0<t≤20时记为A类,当20<t≤40时记为B类,当40<t≤60时记为C类,当t>60时记为D类,收集的数据绘制成如下两幅不完整的统计图,请根据图中提供的信息,解答下列问题:(1)这次共抽取了名学生进行调查统计,扇形统计图中的D类所对应的扇形圆心角为°;(2)将条形统计图补充完整;(3)若该校共有2000名学生,请估计该校每天阅读时长超过40分钟的学生约有多少人?21.(6分)如图,在□ABCD中,E、F分别是BC、AD上的点,且AE∥CF,AE与CF相等吗?说明理由.22.(8分)本工作,某校对八年级一班的学生所穿校服型号情况进行了摸底调查,并根据调查结果绘制了如图所示的两幅不完整的统计图(校服型号以身高作为标准,共分为6种型号)。条形统计图扇形统计图根据以上信息,解答下列问题:(1)该班共有多少名学生?其中穿型校服的学生有多少名?(2)在条形统计图中,请把空缺部分补充完整;(3)在扇形统计图中,请计算型校服所对应的扇形圆心角的大小;(4)求该班学生所穿校服型号的中位数。23.(8分)如图,在中,点是边的一个动点,过点作,交的平分线于点,交的外角平分线于点,(1)求证:;(2)当点位于边的什么位置时四边形是矩形?并说明理由.24.(8分)如图,已知直线过点,.(1)求直线的解析式;(2)若直线与轴交于点,且与直线交于点.①求的面积;②在直线上是否存在点,使的面积是面积的2倍,如果存在,求出点的坐标;如果不存在,请说明理由.25.(10分)如图,在中,,点D,E分别是边AB,AC的中点,连接DE,DC,过点A作交DE的延长线于点F,连接CF.(1)求证:;(2)求证,四边形BCFD是平行四边形;(3)若,,求四边形ADCF的面积.26.(10分)我市进行运河带绿化,计划种植银杏树苗,现甲、乙两家有相同的银杏树苗可供选择,其具体销售方案如下:甲:购买树苗数量不超过500棵时,销售单价为800元棵;超过500棵的部分,销售单价为700元棵.乙:购买树苗数量不超过1000棵时,销售单价为800元棵;超过1000棵的部分,销售单价为600元棵.设购买银杏树苗x棵,到两家购买所需费用分别为元、元(1)该景区需要购买800棵银杏树苗,若都在甲家购买所要费用为______元,若都在乙家购买所需费用为______元;(2)当时,分别求出、与x之间的函数关系式;(3)如果你是该景区的负责人,购买树苗时有什么方案,为什么?

参考答案一、选择题(每小题3分,共30分)1、D【解析】

根据前3个能看到的小正方体的数量找到规律,利用规律即可解题.【详解】(1)中共有1个小正方体,其中一个看的见,0个看不见,即;(2)中共有8个小正方体,其中7个看得见,一个看不见,即;(3)中共有27个小正方体,其中19个看得见,8个看不见,即;……第(5)个图中,看得见的小正方体有即个;故选:D.【点睛】本题主为图形规律类试题,找到规律是解题的关键.2、B【解析】

由条件可知O为三角形三个内角的角平分线的交点,则可知∠OBC+∠OCB=(∠ABC+∠ACB)=(180°-∠A),在△BOC中利用三角形的内角和定理可求得∠BOC.【详解】∵O到三边的距离相等∴BO平分∠ABC,CO平分∠ACB∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°−∠A)∵∠A=60°∴∠OBC+∠OCB=60°∴∠BOC=180°−(∠OBC+∠OCB)=180°−60°=120°故选B.【点睛】本题考查了角平分线的性质,熟练掌握角平分线把一个角分成两个相等的角是解题的关键.3、C【解析】

根据平均数的公式求解即可.【详解】这12名队员的平均年龄是(岁),故选:C.【点睛】本题主要考查平均数,掌握平均数的求法是解题的关键.4、D【解析】

根据正比例函数的性质,时,随的增大而减小,即,即可得解.【详解】根据题意,得即故答案为D.【点睛】此题主要考查正比例函数的性质,熟练掌握,即可解题.5、B【解析】

首先根据题意列出表格,然后由表格求得所有等可能的结果与从中摸出两个球都是绿球的情况,再利用概率公式求解即可求得答案.【详解】解:列表得:∵共有20种等可能的结果,从中摸出两个球都是绿球的有6种情况,

∴从中摸出两个球都是绿球的概率是:.故选:B.【点睛】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.6、A【解析】

根据题意画出图形,利用勾股定理解答即可.【详解】如图,设AC=b,BC=a,分别在直角△ACE与直角△BCD中,根据勾股定理得到:,两式相加得:a2+b2=31,根据勾股定理得到斜边==1.故选A.【点睛】本题是根据勾股定理,把求直角三角形的斜边长的问题转化为求两直角边的平方和的问题.7、D【解析】

连结PP′,如图,先根据旋转的性质得BP=BP′,∠BAP=∠BP′C,∠PBP′=90°,则可判断△PBP′为等腰直角三角形,于是有∠BPP′=45°,PP′=PB=2,然后根据勾股定理的逆定理证明△APP′为直角三角形,得到∠APP′=90°,所以∠BPA=∠BPP′+∠APP′=135°,则∠BP′C=135°.【详解】解:连结PP′,如图,∵四边形ABCD为正方形,∴∠ABC=90°,BA=BC,∴△ABP绕点B顺时针旋转90°得到△CBP′,∴BP=BP′,∠BAP=∠BP′C,∠PBP′=90°,∴△PBP′为等腰直角三角形,∴∠BPP′=45°,PP′=PB=2,在△APP′中,∵PA=1,PP′=2,AP′=3,∴PA2+PP′2=AP′2,∴△APP′为直角三角形,∠APP′=90°,∴∠BPA=∠BPP′+∠APP′=45°+90°=135°,∴∠BP′C=135°.故选D.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰直角三角形的判定与性质和勾股定理的逆定理.8、C【解析】

先根据二次根式有意义的条件求出a-1<0,再根据二次根式的性质把根号外的因式平方后移入根号内,即可得出答案.【详解】∵要是根式有意义,必须-≥0,∴a-1<0,∴(a-1)=-,故选C.【点睛】本题考查了二次根式的性质的应用,注意:当m≥0时,m=,当m≤0时,m=-.9、A【解析】

根据二次根式的运算法则逐一进行计算即可.【详解】,二次根式不能相加,故A计算错误,符合题意,,B计算正确,不符合题意,,C计算正确,不符合题意,,D计算正确,不符合题意,故选A.【点睛】本题考查二次根式的运算,熟知二次根式的运算法则是解题关键.10、C【解析】

根据勾股定理计算即可.【详解】由勾股定理得,a=,故选C.【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.二、填空题(每小题3分,共24分)11、5【解析】

根据十字相乘的进行因式分解即可得出答案.【详解】根据题意可得:∴∴k=5故答案为5.【点睛】本题考查的是因式分解,难度适中,需要熟练掌握因式分解的步骤.12、.【解析】

作AE⊥OB于E,A′H⊥OB于H.求出A′H,OH即可解决问题.【详解】如图,作AE⊥OB于E,A′H⊥OB于H.∵A(1,),∴OE=1,AE=,∴OA==2,∵△OAB是等边三角形,∴∠AOB=60°,∵∠AOA′=15°,∴∠A′OH=60°﹣15°=45°,∵OA′=OA=2,H⊥OH,∴A′H=OH=,∴(,),故答案为:(,).【点睛】此题考查等边三角形的性质,旋转的性质,勾股定理,求直角坐标系中点的坐标需从点向坐标轴作垂线,求出垂线段的长度由此得到点的坐标.13、【解析】

利用面积法,分别以直角边为底和斜边为底,根据三角形面积相等,可以列出方程,解得答案【详解】解:设斜边上的高为h,在Rt△ABC中,利用勾股定理可得:根据三角形面积两种算法可列方程为:解得:h=2.4cm,故答案为2.4cm【点睛】本题考查勾股定理和利用面积法算垂线段的长度,要熟练掌握.14、x1=0,x2=1【解析】

方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【详解】方程变形得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=0,x2=1.故答案为x1=0,x2=1.【点睛】此题考查了解一元二次方程﹣因式分解法,熟练掌握方程的解法是解本题的关键.15、71【解析】

根据中位数和众数的定义解答.【详解】解:数据按从小到大排列:3,5,7,1,1,所以中位数是7;数据1出现2次,次数最多,所以众数是1.故填7;1.【点击】本题考查了中位数,众数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数最多的数据,注意众数可以不止一个.16、87.1【解析】分析:运用加权平均数的公式直接计算.用80分,90分,91分,分别乘以3,3,2,再用它们的和除以8即可.详解:由题意知,总成绩=(80×3+90×3+91×2)÷(3+3+2)=87.1(分).故答案为:87.1.点睛:本题考查的是加权平均数的求法.本题易出现的错误是直接求出80,90,91的平均数.17、【解析】

根据∆>0列式求解即可.【详解】由题意得4-8m>0,∴.故答案为:.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.18、24【解析】

设其余两边长分别为、,根据勾股定理列出方程,解方程求出,计算即可.【详解】设其余两边长分别为、,由勾股定理得,,整理得,,解得,(舍去),,则其余两边长分别为、,则这个三角形的周长.故答案为:.【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是、,斜边长为,那么.三、解答题(共66分)19、,【解析】

先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【详解】解:原式====.当x=时,原式==.【点睛】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.20、(1)50;36°;(2)见解析;(3)估计该校每天阅读时长超过40分钟的学生约有500人【解析】

(1)用A类人数除以它所占的百分比得到调查的总人数;然后用D类人数分别除以调查的总人数×360°即可得到结论;(2)先计算出D类人数,然后补全条形统计图;(3)利用样本估计总体,用2000乘以样本中C+D类的百分比即可.【详解】解:(1)15÷30%=50,所以这次共抽查了50名学生进行调查统计;扇形统计图中D类所对应的扇形圆心角大小为:×360°=36°,故答案为50;36°;(2)D类人数为50﹣15﹣22﹣8=5,如图所示,该条形统计图为所求。(3)估计该校每天阅读时长超过40分钟的学生约有人【点睛】本题考查了条形统计图与扇形统计图,样本估计总体等,条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.从条形图可以很容易看出数据的大小.21、AE=CF.理由见解析.【解析】试题分析:根据两组对边平行的四边形是平行四边形,可以证明四边形AECF是平行四边形,从而得到AE=CF.试题解析:AE=CF.理由如下:∵四边形ABCD是平行四边形,∴AD∥BC,即AF∥EC.又∵AE∥CF,∴四边形AECF是平行四边形.∴AE=CF.考点:平行四边形的判定与性质.22、(1)50,10;(2)见解析;(3)14.4°;(4)170型【解析】

(1)根据穿165型的人数与所占的百分比列式进行计算即可求出学生总人数,再乘以175型所占的百分比计算即可得解;

(2)求出185型的人数,然后补全统计图即可;(3)用185型所占的百分比乘以360°计算即可得解;(4)根据中位数的定义求解即可.【详解】解:(1)15÷30%=50(名),50×20%=10(名),

即该班共有50名学生,其中穿175型校服的学生有10名.(2)185型的学生人数为:50-3-15-15-10-5=50-48=2(名),补全统计图如图所示:(3)185型校服所对应的扇形圆心角为:;(4)∵第25和26名学生都穿170型,∴中位数是170型.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,中位数的定义.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23、(1)见解析;(2)当点位于的中点时,四边形是矩形,见解析.【解析】

(1)由于CE平分∠ACB,MN∥BC,故∠BCE=∠OEC=∠OCE,OE=OC,同理可得OC=OF,故0C=;(2)根据平行四边形的判定定理可知,当OA=OC时,四边形AECF是平行四边形.由于CE、CF分别是∠ECO与∠OCF的平分线,故∠ECF是直角,则四边形AECF是矩形.【详解】证明:(1)∵平分,平分∴,∵∴,∴,∴∴(2)当点位于的中点时,四边形是矩形理由如下:∵是的中点∴由(1)得:∴四边形是平行四边形∵,∴∴即∴四边形是矩形.【点睛】本题考查的是平行线,角平分线,平行四边形及矩形的判定与性质,是一道有一定的综合性的好题.24、(1);(2)6;(3)或【解析】

(1)根据点A、D的坐标利用待定系数法即可求出直线l的函数解析式;(2)令y=-x+4=0求出x值,即可得出点B的坐标,联立两直线解析式成方程组,解方程组即可得出点C的坐标,再根据三角形的面积即可得出结论;(3)假

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论