




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
20202021学年新教材人教B版必修其次册6.2.2直线上向量的坐标及其运算作业一、选择题1、平面对量,,且//,那么〔〕A. B. C. D.2、以下命题正确的选项是()A.假设与共线,与共线,那么与共线B.向量共面,即它们所在的直线共面C.假设,那么存在唯一的实数使D.零向量是模为,方向任意的向量3、a=(1,1),b=(1,-1),那么a-b等于()A.(-1,2)B.(1,-2)C.(-1,-2)D.(1,2)4、向量,,假设,那么〔〕A.B.C.2D.5、点,假设,那么实数〔〕A.B.C.D.6、向量,假设,那么〔〕A.B.2C.3D.17、向量,,假设向量⊥,那么实数的值为〔〕A.1B.2C.3D.38、平面对量,,,那么〔〕A.1 B. C. D.29、,且,那么等于〔〕A.B.C.D.10、=(-1,3),=(1,k),假设⊥,那么实数k的值是()A.k=3B.k=-3C.k=D.k=-11、平面对量,那么向量〔〕A.B.C.D.12、设,向量,,,且,,那么〔〕A.B.C.D.10二、填空题13、,,与共线,那么_____.14、向量,,假设,那么向量的模为____.15、设向量,且,那么实数的值是_______;16、设平面对量,,,假设,那么实数的值等于___.三、解答题17、〔本小题总分值10分〕在中,点为边的中点.〔1〕假设,求;〔2〕假设,试推断的外形.18、〔本小题总分值12分〕,,求当k为何值时〔1〕垂直;(2)平行.19、〔本小题总分值12分〕向量.〔1〕假设与向量垂直,求实数的值;〔2〕假设向量,且与向量平行,求实数的值.20、〔本小题总分值12分〕.证明:A、B、C三点共线;假设,求x的值.参考答案1、答案B由向量平行的坐标运算求得参数的值,计算出两向量的和后再由模的坐标表示求得模详解∵//,∴,,∴,∴.应选:B.2、答案D假设为零向量,即可推断A选项;依据向量的特征,可推断B选项;依据共线向量定理,可推断C选项;依据零向量的定义,可推断D选项.详解A选项,假设,那么依据零向量方向的任意性,可的与共线,与共线;但与不肯定共线,故A错;B选项,由于向量是可以自由移动的量,因此三个向量共面,其所在的直线不肯定共面;故B错;C选项,依据共线向量定理,假设,其中,那么存在唯一的实数使;故C错;D选项,依据零向量的定义可得,零向量是模为,方向任意的向量;即D正确.应选:D.3、答案A直接利用向量的坐标运算计算即可.详解依据题意可得应选A.4、答案C由题选C5、答案D即,选D.6、答案C依据向量的坐标运算,列出方程,即可求解实数的值.详解由题意,所以,解得,应选C.7、答案C向量,,由于向量⊥,所以,应选C.8、答案C依据平面对量共线的坐标表示列式可解得.详解由于,,,所以,解得.应选:C9、答案D,应选D.10、答案C依据⊥得,进行数量积的坐标运算即可求k值.详解由于=(-1,3),=(1,k),且⊥,,解得k=,应选:C.11、答案D由得,应选D.12、答案B,,故.13、答案向量的坐标,依据向量共线得到表达式,进而求解.详解,,与共线,那么.故答案为:2.14、答案10∵,且,,∴=0∴,即∴故答案为:1015、答案2由条件利用两个向量共线的性质求得x的值.详解解:∵,,且,∴2x=,即x=2故答案为:216、答案,所以,.17、答案〔1〕;〔2〕直角三角形〔2〕由平面对量数量积运算可得:即,再结合余弦定理求解即可得解.详解(1)解:由于====;(2)由于,所以所以,由余弦定理可得,化简得:,故为直角三角形.18、答案〔1〕;〔2〕.由题意可得:,而,故满意题意时:〔1〕,解得:.〔2〕,解得:.19、答案〔1〕;〔2〕.〔2〕先得到的坐标,然后依据与平行,得到坐标关系,即关于的方程,求出答案.详解〔1〕由题意,,,由于与垂直,所以整理得,解得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- Linux系统管理与运用知识试题及答案
- 线下备考与软件设计师考试的试题及答案
- 行政管理相关政策试题及答案详解
- 河北省石家庄市第四十一中学2025年八年级数学第二学期期末监测模拟试题含解析
- 软件开发生命周期中的关键环节的试题及答案
- 法学概论话语权探讨试题及答案
- 风险管理心理学试题及答案
- 准备2025年VB考试的试题及答案技巧
- 法学概论全面解读与试题及答案
- 高考数学复习动态调整试题及答案
- 环保管家服务投标方案(技术标)
- 桩顶地系梁专项施工方案
- 电气工程概论-肖登明
- 民间个人借款还清证明范本
- 胶粘剂制造业行业营销方案
- 【江淮汽车公司财务现状及其盈利能力问题分析(10000字论文)】
- Sibelius使用教程教材说明
- 学会宽容快乐生活主题班会课件
- ASME-B31.3-2008-工艺管道壁厚计算
- 民事检察监督申请书(参考范文)
- 房屋市政工程开复工安全生产条件检查表
评论
0/150
提交评论