儿子六年级期间或者后可看考研数学难点一本通_第1页
儿子六年级期间或者后可看考研数学难点一本通_第2页
儿子六年级期间或者后可看考研数学难点一本通_第3页
儿子六年级期间或者后可看考研数学难点一本通_第4页
儿子六年级期间或者后可看考研数学难点一本通_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

ff(x,0)fx2e(xexxxf'(0,0)xxxxx而xxxx故f'x(0,0f(0,y)f(0,y)fy4e(y1e(y21yyyf'y(0,0(B1571、令

f(x,y)

f

f

x

x2

xyx

y0

f'x(0,0) f'y(0,0zf1xf1lim lim

f(x,

(x)2

f(

(x)2 ((

A

x)(

x)2

(x)2

(B)f(x,(A)f(xy)x

y,极限

x

1f(xy在(0,0f(xyxy,在(0,0而极限

f(x,

x2f(xyx2y2)3,在(0,0处可而极限2p

2(x2y2x2xay

(x (xp a(xy)2(xay)2(xy)2(xy)

(x

(x a 158xln x(lnylnx1zeyxe eyx[ (lnylnx)]'eyx (lnylnx)

22

1ln21] 2、zexln(xey

2(ln22

(xey)x[ln(xey)x

xey

(11)1[ln(11)1 12ln2 arctan

11arctan y3 2xy

x(x2y2)

x

arctanx

arctanx

1 x arctan

arctan y2y x(x2y2)y

x 2yarctan

arctanxx

arctanx

1 xdz x[(2xy)dx(2y2

[(2xy)

arctanyxyarctan

arctan y)

x 1 y2 y2xyx2

arctan PAGEPAGE15911x1

f'y

f'

g

f'1x

f'2(222

y(f''y)f'x[f''yf''x]yf''

12y2f''xyf''x2f''f'xyf xxf

xxf

(y)

f'y[f

x

f

x2f''xyf''xyf''y2f''f f(u,v故f f 22g22g

2

(yx)f''11(xy)f''222xyf''122xyf''12

f'2

f(x2y2)(f''f''22

22

f''f 又

22g22g

x2

2x2

f'esinyf'2z

cosyef'1esiny[f''11

cosy

f''1222x(f''excosyf''e2xsinycosyf''2yexsinyf''2xexcosyf 4xyf''excosyf 1

f'

f'[f'

f'

23(23)d3d3

3

2(x)

d(x)

172 f'yf'(yg 2

f'yf''xyf''[g(x)]g'(x)f'yg'(x)[f''xf''

又g(x)可导且在x1处取到列极值g(1) 2 f'(1,1)2

f''12xau

x ,x a

a

a3、 v 1y y a a2 azzuzva2za2 v zzxzy z 1 x y a2 a2 (z (z

(z2z u ux2

u

2 2

2 2 )a2 a2

) a2 a2 a 2z

2z 2z(a2)2

(a (a

(a2)2

2

(2

2

2z00a1621、方程两边对x求偏导有F

y

zx' 0

z

2 2

x2FF'1

'

0zF1

xzyz

yF1'zF2'yF1'故选

2(Ⅰ)x

2x'1

z

2y1dz2x'dx2y'1 1

(

)

2z

2) (xy)2

x

2

(2x (2''2x1 1

1x2

(2x

2

1 1

1xy

u2(12x) 33u'(u)up(x)u

p(x) 1u'(u)up(y)u

p( 1zzu

f'(u)

1z

f'(u)

p(y)1'(u)p(y)zp(x)z

p(x)p(y)f'(u)p(y)p(x)f

1 1163163

2x(2y2)11、令 2x2ylny1

得驻点(0,)e2

2(2y2

2

2

2x2y因B2

1(0,e

02(2e2)(0e)eA2(2e20,故f(01e f(0,1)1ln1 x

x2

x

x22

(x)

x22

(1x2)2、令

2 2 f

x

x x

(y)

2

x22

(1x2

x22

(x)

x22

(x322

x2

x22

(x2

( B2

0

2

2(10

2f(1,0)B2

20

2

2(10

2(f(1,0)

2

( 3.2x2zx24x0;2y2zy24y0zx1 z令z y z

z2(x1)z

(z

2(x2

(zz(x (z

(x(z

(z2z

z2(y1)(z

(z2)2(y(zx1y1时,11z2224z10z2z(z (z 又B2 0 1

(z

(z

(zA

zz2A0zz6A0z1641

F(x,y,z,,)x2y2z2(x2y2z)(xyz

2x2x

2y2y

令 2z

x2y2z

xyz4 ②x①y:2xy2xyx2xy2xyy 2(xy)0x 22xz

x

x

2x2

y

,y故(1,12)与(2,2,8u(2,2,8)

z

zumax

165 x2y2

d2x2 L(xyz,,x2y2(x2y22z2(xy L2x2x 2y2y

x

x 4z3

得y

或y

z

z

x2y22z2

xy3z522又d(x,y)(1,1) ,d(x,y)(5,5)222令

yx2

得在D x11Dy

0x

z(x,y) x3x

0y

z(x,y)yxy7(0x7F(xy,)xy

13

y(xy

yx2

x

x令 x1

y

或y

(舍去

xy7 而f(2,5)25 85 7f(x

f(2,5)31671、投入总费用Cpxp1 2f(xx,pxpx(2xx12) 1 2

p2x1x

x

2xx1 f2xx12 12 1 2x1x 12 1 2xx ②xpx2xx 2 2③代入⑤有:px122p p1221由⑥⑦x26(p x16(p1221p p1221因此两要素各投入x26(p ,x16(p1221

2f(xy,)

12

n

)(xy

(l0,nf

nxn1 f

xyn1

yfxyl

[(()](z l[(()]( 22

n(n1) x2

2

x2

()n2

B2AC 故z在 )上取极小值,有2(l)n1

nyn a

b

n11

n

)(a

,且当ab 176176sinydxdy1

ysinyy yD

1siny

y 10sinyysincosy11ysin 1cos11(cosy)'ydy1cos1cosyy11cos 11cosydy1siny11 D1D2xD3D4y1(x2y2

]dxdy

1(x2y2

1(x2y2

[y

]dxdy220dyyydx20yxydy

20y2dy2(1y3

0

xr令yrsin1x2

11r22 2dxdy2d2

D1x

01 2

(1

1

) dr222d 2r22ln(1r2)1d2 1 2ln2 (2ln24xr令yr ,x2x24a2x2

4a24a2r2D

d4

4a2sin2r2asin

d4

2a

2a004

4a2sin20

0u1sin2u20204

040

2a2

12

42a2 1 PAGEPAGE177 0yy2y22 2原积分

f(x,

0

f(x,y)dy

f(x,222D:

0x

D:

2x10y1x2

20y

8x2 82原积分0dy282

f(x,

02

xr又令yrr

rr2r

2xyx2r

r2

x2y202故:原积分02

f(x2y22220r

0rcos

0xD: 0

0r

y I0dx0

1x2y211 3 (1x2y2)2 02 1 1(1x2)231

1(1x2)21

x

dx 1

2cos40 1 1D1D2

xy而ln(xyD1故I I,I均大于零,排除B,D1 又令uxsinuC

u II II

I 1

1 xI10dxxycosxdy02x

cos

dx

cosx

cos11cosxdx0

0

I3D2D5yI2 0II 0

D4D5y1xI 1 1x

1 0dx0ycosxdy02I2

cos

dy02

1 1I1I402cosxdx0(A

cosxdx1D如图所示,则sinx2cosy2d4sinx2cos

1Dxy12I1sinx2cosy2siny2cosxr

sin(x2y2a又令yrsina 2I2d

sinr2 20

1cosr2

0 201

1cosa21 (1cosa2) (1cosa2)24I(1cosa2)sinx2cos2D2f(u,v)dudvADAf(x,y)dxdyxy 1f(xyxy18

08C

xy1821821、D如图所示DD1D2D3Dyx的偶函数,故yx2dxdyD

yx2 2122x21x4 x22dx542DIemax(x2,y2)dxdy

emax( ey2dxdyex2 D 1dyyey2dx1dxx 21dyyey2dx21ey2

ydy021ey2ydy0

1e101821823DDD1cos(xy)dxdyD

cos(xy)cos(xy)dxdycos(x D 2

cos(xy)dy

4dy

cos(x 2 2

2sin(x4

dx

4sin(xy)2 2sin2x1dx4

41sin221sin2dxx

cos

4(ax)(x(ax)(xIadxx f'((ax)(x(ax)(x (ax)(xaf'((ax)(x xayay uxayay(ax)(x(ax)(x

ay 2udu2

ay y2

u aa aa 2Iaf'(y)dy(f(y)a)(f(a)

f 1941941、

ln(11

ln(11 n 故an与un有相同的敛散性故级数

ln(11PAGEPAGE1961(A)错。令

nun

nn错。令un1)nn

1nn1

21n

错。令

(1)n

2

2n1

2错。令

(1)nn

1 1n错。令

(1)nn

(1)n

1n1n1n1nn1错。令annn1

anan1

n nan n正确。 n1 (a

2

n3(A)错。令b(1)n1 an

n(B)错。令b(1)n,a ab(1)n

n ab正确。limnnlimab 又

收敛,故ab收敛,故ab 错。令

1

a2b2

n1n2n(n1n2n(n1 n n1 n1、ann n1 nn n

22n n(n1 n

(n1)tan

2、n

ntan

n

2nn

3、an

n) )n

n1

) n p0n

) (n n n1 pn p0n

(n1

n) (n 1 4、

(n333

,而 3收敛1

1 5、anxarctanxdx arctan 2n2 n 0n11

1 2 n n 12又0

1

dx

1

xn1dx n

01 n1

n

n2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论