




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022中考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,两个转盘A,B都被分成了3个全等的扇形,在每一扇形内均标有不同的自然数,固定指针,同时转动转盘A,B,两个转盘停止后观察两个指针所指扇形内的数字(若指针停在扇形的边线上,当作指向上边的扇形).小明每转动一次就记录数据,并算出两数之和,其中“和为7”的频数及频率如下表:转盘总次数10203050100150180240330450“和为7”出现频数27101630465981110150“和为7”出现频率0.200.350.330.320.300.300.330.340.330.33如果实验继续进行下去,根据上表数据,出现“和为7”的频率将稳定在它的概率附近,估计出现“和为7”的概率为()A.0.33 B.0.34 C.0.20 D.0.352.小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x千米/小时,根据题意,得A.25x-C.30(1+80%)x-3.若一元二次方程x2﹣2kx+k2=0的一根为x=﹣1,则k的值为()A.﹣1 B.0 C.1或﹣1 D.2或04.如图给定的是纸盒的外表面,下面能由它折叠而成的是()A. B. C. D.5.如图,矩形ABOC的顶点A的坐标为(﹣4,5),D是OB的中点,E是OC上的一点,当△ADE的周长最小时,点E的坐标是()A.(0,) B.(0,) C.(0,2) D.(0,)6.扇形的半径为30cm,圆心角为120°,用它做成一个圆锥的侧面,则圆锥底面半径为()A.10cm B.20cm C.10πcm D.20πcm7.如图是某几何体的三视图及相关数据,则该几何体的全面积是()A.15π B.24π C.20π D.10π8.不等式组的解集是()A.x>-1 B.x>3C.-1<x<3 D.x<39.剪纸是我国传统的民间艺术.下列剪纸作品既不是中心对称图形,也不是轴对称图形的是()A. B. C. D.10.小明和小张两人练习电脑打字,小明每分钟比小张少打6个字,小明打120个字所用的时间和小张打180个字所用的时间相等.设小明打字速度为x个/分钟,则列方程正确的是()A. B. C. D.11.如图,钓鱼竿AC长6m,露在水面上的鱼线BC长m,某钓者想看看鱼钓上的情况,把鱼竿AC转动到AC'的位置,此时露在水面上的鱼线B′C′为m,则鱼竿转过的角度是()A.60° B.45° C.15° D.90°12.下列各数3.1415926,,,,,中,无理数有()A.2个 B.3个 C.4个 D.5个二、填空题:(本大题共6个小题,每小题4分,共24分.)13.百子回归图是由1,2,3,…,100无重复排列而成的正方形数表,它是一部数化的澳门简史,如:中央四位“19991220”标示澳门回归日期,最后一行中间两位“2350”标示澳门面积,…,同时它也是十阶幻方,其每行10个数之和、每列10个数之和、每条对角线10个数之和均相等,则这个和为______.百子回归14.若一个等腰三角形的周长为26,一边长为6,则它的腰长为____.15.如图,四边形ABCD中,AD=CD,∠B=2∠D=120°,∠C=75°.则=16.如图,等边△ABC的边长为1cm,D、E分别是AB、AC边上的点,将△ADE沿直线DE折叠,点A落在点处,且点在△ABC的外部,则阴影部分图形的周长为_____cm.17.一个圆锥的侧面展开图是半径为8cm、圆心角为120°的扇形,则此圆锥底面圆的半径为________.18.将三角形纸片()按如图所示的方式折叠,使点落在边上,记为点,折痕为,已知,,若以点,,为顶点的三角形与相似,则的长度是______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)计算:2tan45°-(-)º-20.(6分)如图,AB是的直径,AF是切线,CD是垂直于AB的弦,垂足为点E,过点C作DA的平行线与AF相交于点F,已知,.求AD的长;求证:FC是的切线.21.(6分)解方程:(1)x2﹣7x﹣18=0(2)3x(x﹣1)=2﹣2x22.(8分)为更精准地关爱留守学生,某学校将留守学生的各种情形分成四种类型:A.由父母一方照看;B.由爷爷奶奶照看;C.由叔姨等近亲照看;D.直接寄宿学校.某数学小组随机调查了一个班级,发现该班留守学生数量占全班总人数的20%,并将调查结果制成如下两幅不完整的统计图.该班共有名留守学生,B类型留守学生所在扇形的圆心角的度数为;将条形统计图补充完整;已知该校共有2400名学生,现学校打算对D类型的留守学生进行手拉手关爱活动,请你估计该校将有多少名留守学生在此关爱活动中受益?23.(8分)佳佳向探究一元三次方程x3+2x2﹣x﹣2=0的解的情况,根据以往的学习经验,他想到了方程与函数的关系,一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b(k≠0)的解,二次函数y=ax2+bx+c(a≠0)的图象与x轴交点的横坐标即为一元二次方程ax2+bx+c=0(a≠0)的解,如:二次函数y=x2﹣2x﹣3的图象与x轴的交点为(﹣1,0)和(3,0),交点的横坐标﹣1和3即为x2﹣2x﹣3=0的解.根据以上方程与函数的关系,如果我们直到函数y=x3+2x2﹣x﹣2的图象与x轴交点的横坐标,即可知方程x3+2x2﹣x﹣2=0的解.佳佳为了解函数y=x3+2x2﹣x﹣2的图象,通过描点法画出函数的图象.x…﹣3﹣﹣2﹣﹣1﹣012…y…﹣8﹣0m﹣﹣2﹣012…(1)直接写出m的值,并画出函数图象;(2)根据表格和图象可知,方程的解有个,分别为;(3)借助函数的图象,直接写出不等式x3+2x2>x+2的解集.24.(10分)如图,AB是⊙O的直径,点C为⊙O上一点,经过C作CD⊥AB于点D,CF是⊙O的切线,过点A作AE⊥CF于E,连接AC.(1)求证:AE=AD.(2)若AE=3,CD=4,求AB的长.25.(10分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.治理杨絮一一您选哪一项?(单选)A.减少杨树新增面积,控制杨树每年的栽种量B.调整树种结构,逐渐更换现有杨树C.选育无絮杨品种,并推广种植D.对雌性杨树注射生物干扰素,避免产生飞絮E.其他根据以上统计图,解答下列问题:(1)本次接受调查的市民共有人;(2)扇形统计图中,扇形E的圆心角度数是;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.26.(12分)如图所示,点B、F、C、E在同一直线上,AB⊥BE,DE⊥BE,连接AC、DF,且AC=DF,BF=CE,求证:AB=DE.27.(12分)截至2018年5月4日,中欧班列(郑州)去回程开行共计1191班,我省与欧洲各国经贸往来日益频繁,某欧洲客商准备在河南采购一批特色商品,经调查,用1600元采购A型商品的件数是用1000元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价少20元,已知A型商品的售价为160元,B型商品的售价为240元,已知该客商购进甲乙两种商品共200件,设其中甲种商品购进x件,该客商售完这200件商品的总利润为y元(1)求A、B型商品的进价;(2)该客商计划最多投入18000元用于购买这两种商品,则至少要购进多少件甲商品?若售完这些商品,则商场可获得的最大利润是多少元?(3)在(2)的基础上,实际进货时,生产厂家对甲种商品的出厂价下调a元(50<a<70)出售,且限定商场最多购进120件,若客商保持同种商品的售价不变,请你根据以上信息及(2)中的条件,设计出使该客商获得最大利润的进货方案.
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、A【解析】
根据上表数据,出现“和为7”的频率将稳定在它的概率附近,估计出现“和为7”的概率即可.【详解】由表中数据可知,出现“和为7”的概率为0.33.故选A.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.2、A【解析】若设走路线一时的平均速度为x千米/小时,根据路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达可列出方程.解:设走路线一时的平均速度为x千米/小时,25故选A.3、A【解析】
把x=﹣1代入方程计算即可求出k的值.【详解】解:把x=﹣1代入方程得:1+2k+k2=0,解得:k=﹣1,故选:A.【点睛】此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.4、B【解析】
将A、B、C、D分别展开,能和原图相对应的即为正确答案:【详解】A、展开得到,不能和原图相对应,故本选项错误;B、展开得到,能和原图相对,故本选项正确;C、展开得到,不能和原图相对应,故本选项错误;D、展开得到,不能和原图相对应,故本选项错误.故选B.5、B【解析】解:作A关于y轴的对称点A′,连接A′D交y轴于E,则此时,△ADE的周长最小.∵四边形ABOC是矩形,∴AC∥OB,AC=OB.∵A的坐标为(﹣4,5),∴A′(4,5),B(﹣4,0).∵D是OB的中点,∴D(﹣2,0).设直线DA′的解析式为y=kx+b,∴,∴,∴直线DA′的解析式为.当x=0时,y=,∴E(0,).故选B.6、A【解析】试题解析:扇形的弧长为:=20πcm,∴圆锥底面半径为20π÷2π=10cm,故选A.考点:圆锥的计算.7、B【解析】解:根据三视图得到该几何体为圆锥,其中圆锥的高为4,母线长为5,圆锥底面圆的直径为6,所以圆锥的底面圆的面积=π×()2=9π,圆锥的侧面积=×5×π×6=15π,所以圆锥的全面积=9π+15π=24π.故选B.点睛:本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的半径等于圆锥的母线长,扇形的弧长等于圆锥底面圆的周长.也考查了三视图.8、B【解析】
根据解不等式组的方法可以求得原不等式组的解集.【详解】,解不等式①,得x>-1,解不等式②,得x>1,由①②可得,x>1,故原不等式组的解集是x>1.故选B.【点睛】本题考查解一元一次不等式组,解题的关键是明确解一元一次不等式组的方法.9、A【解析】试题分析:根据轴对称图形和中心对称图形的概念可知:选项A既不是中心对称图形,也不是轴对称图形,故本选项正确;选项B不是中心对称图形,是轴对称图形,故本选项错误;选项C既是中心对称图形,也是轴对称图形,故本选项错误;选项D既是中心对称图形,也是轴对称图形,故本选项错误.故选A.考点:中心对称图形;轴对称图形.10、C【解析】
解:因为设小明打字速度为x个/分钟,所以小张打字速度为(x+6)个/分钟,根据关系:小明打120个字所用的时间和小张打180个字所用的时间相等,可列方程得,故选C.【点睛】本题考查列分式方程解应用题,找准题目中的等量关系,难度不大.11、C【解析】试题解析:∵sin∠CAB=∴∠CAB=45°.∵,∴∠C′AB′=60°.∴∠CAC′=60°-45°=15°,鱼竿转过的角度是15°.故选C.考点:解直角三角形的应用.12、B【解析】
根据无理数的定义即可判定求解.【详解】在3.1415926,,,,,中,,3.1415926,是有理数,,,是无理数,共有3个,故选:B.【点睛】本题主要考查了无理数的定义,其中初中范围内学习的无理数有:等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、505【解析】
根据已知得:百子回归图是由1,2,3…,100无重复排列而成,先计算总和;又因为一共有10行,且每行10个数之和均相等,所以每行10个数之和=总和÷10,代入求解即可.【详解】1~100的总和为:=5050,
一共有10行,且每行10个数之和均相等,所以每行10个数之和为:n=5050÷10=505,故答案为505.【点睛】本题是数字变化类的规律题,是常考题型;一般思路为:按所描述的规律从1开始计算,从计算的过程中慢慢发现规律,总结出与每一次计算都符合的规律,就是最后的答案14、1【解析】
题中给出了周长和一边长,而没有指明这边是否为腰长,则应该分两种情况进行分析求解.【详解】①当6为腰长时,则腰长为6,底边=26-6-6=14,因为14>6+6,所以不能构成三角形;②当6为底边时,则腰长=(26-6)÷2=1,因为6-6<1<6+6,所以能构成三角形;故腰长为1.故答案为:1.【点睛】此题主要考查等腰三角形的性质及三角形三边关系的综合运用,关键是利用三角形三边关系进行检验.15、【解析】
连接AC,过点C作CE⊥AB的延长线于点E,,如图,先在Rt△BEC中根据含30度的直角三角形三边的关系计算出BC、CE,判断△AEC为等腰直角三角形,所以∠BAC=45°,AC=,利用即可求解.【详解】连接AC,过点C作CE⊥AB的延长线于点E,∵∠ABC=2∠D=120°,∴∠D=60°,∵AD=CD,∴△ADC是等边三角形,∵∠D+∠DAB+∠ABC+∠DCB=360°,∴∠ACB=∠DCB-∠DCA=75°-60°=15°,∠BAC=180°-∠ABC-∠ACB=180°-120°-15°=45°,∴AE=CE,∠EBC=45°+15°=60°,∴∠BCE=90°-60°=30°,设BE=x,则BC=2x,CE=,在RT△AEC中,AC=,∴,故答案为.【点睛】本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.合理作辅助线是解题的关键.16、3【解析】
由折叠前后图形全等,可将阴影部分图形的周长转化为三角形周长.【详解】∵△A'DE与△ADE关于直线DE对称,∴AD=A'D,AE=A'E,C阴影=BC+A'D+A'E+BD+EC=BC+AD+AE+BD+EC=BC+AB+AC=3cm.故答案为3.【点睛】由图形轴对称可以得到对应的边相等、角相等.17、cm【解析】试题分析:把扇形的弧长等于圆锥底面周长作为相等关系,列方程求解.设此圆锥的底面半径为r,根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得,2πr=,r=cm.考点:圆锥侧面展开扇形与底面圆之间的关系18、或2【解析】
由折叠性质可知B’F=BF,△B’FC与△ABC相似,有两种情况,分别对两种情况进行讨论,设出B’F=BF=x,列出比例式方程解方程即可得到结果.【详解】由折叠性质可知B’F=BF,设B’F=BF=x,故CF=4-x当△B’FC∽△ABC,有,得到方程,解得x=,故BF=;当△FB’C∽△ABC,有,得到方程,解得x=2,故BF=2;综上BF的长度可以为或2.【点睛】本题主要考查相似三角形性质,解题关键在于能够对两个相似三角形进行分类讨论.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、2-【解析】
先求三角函数,再根据实数混合运算法计算.【详解】解:原式=2×1-1-=1+1-=2-【点睛】此题重点考察学生对三角函数值的应用,掌握特殊角的三角函数值是解题的关键.20、(1);(2)证明见解析.【解析】
(1)首先连接OD,由垂径定理,可求得DE的长,又由勾股定理,可求得半径OD的长,然后由勾股定理求得AD的长;(2)连接OF、OC,先证明四边形AFCD是菱形,易证得△AFO≌△CFO,继而可证得FC是⊙O的切线.【详解】证明:连接OD,是的直径,,,设,,,在中,,,解得:,,,,在中,;连接OF、OC,是切线,,,,,四边形FADC是平行四边形,,平行四边形FADC是菱形,,,,,即,即,点C在上,是的切线.【点睛】此题考查了切线的判定与性质、菱形的判定与性质、垂径定理、勾股定理.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.21、(1)x1=9,x2=﹣2;(2)x1=1,x2=﹣.【解析】
(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】解:(1)x2﹣7x﹣18=0,(x﹣9)(x+2)=0,x﹣9=0,x+2=0,x1=9,x2=﹣2;(2)3x(x﹣1)=2﹣2x,3x(x﹣1)+2(x﹣1)=0,(x﹣1)(3x+2)=0,x﹣1=0,3x+2=0,x1=1,x2=﹣.【点睛】本题考查了解一元二次方程,熟练掌握因式分解法是解此题的关键.22、(1)10,144;(2)详见解析;(3)96【解析】
(1)依据C类型的人数以及百分比,即可得到该班留守的学生数量,依据B类型留守学生所占的百分比,即可得到其所在扇形的圆心角的度数;(2)依据D类型留守学生的数量,即可将条形统计图补充完整;(3)依据D类型的留守学生所占的百分比,即可估计该校将有多少名留守学生在此关爱活动中受益.【详解】解:(1)2÷20%=10(人),×100%×360°=144°,故答案为10,144;(2)10﹣2﹣4﹣2=2(人),如图所示:(3)2400××20%=96(人),答:估计该校将有96名留守学生在此关爱活动中受益.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.23、(1)2;(2)3,﹣2,或﹣1或1.(3)﹣2<x<﹣1或x>1.【解析】试题分析:(1)求出x=﹣1时的函数值即可解决问题;利用描点法画出图象即可;(2)利用图象以及表格即可解决问题;(3)不等式x3+2x2>x+2的解集,即为函数y=x3+2x2﹣x﹣2的函数值大于2的自变量的取值范围,观察图象即可解决问题.试题解析:(1)由题意m=﹣1+2+1﹣2=2.函数图象如图所示.(2)根据表格和图象可知,方程的解有3个,分别为﹣2,或﹣1或1.(3)不等式x3+2x2>x+2的解集,即为函数y=x3+2x2﹣x﹣2的函数值大于2的自变量的取值范围.观察图象可知,﹣2<x<﹣1或x>1.24、(1)证明见解析(2)【解析】
(1)连接OC,根据垂直定义和切线性质定理证出△CAE≌△CAD(AAS),得AE=AD;(2)连接CB,由(1)得AD=AE=3,根据勾股定理得:AC=5,由cos∠EAC=,cos∠CAB==,∠EAC=∠CAB,得=.【详解】(1)证明:连接OC,如图所示,∵CD⊥AB,AE⊥CF,∴∠AEC=∠ADC=90°,∵CF是圆O的切线,∴CO⊥CF,即∠ECO=90°,∴AE∥OC,∴∠EAC=∠ACO,∵OA=OC,∴∠CAO=∠ACO,∴∠EAC=∠CAO,在△CAE和△CAD中,,∴△CAE≌△CAD(AAS),∴AE=AD;(2)解:连接CB,如图所示,∵△CAE≌△CAD,AE=3,∴AD=AE=3,∴在Rt△ACD中,AD=3,CD=4,根据勾股定理得:AC=5,在Rt△AEC中,cos∠EAC==,∵AB为直径,∴∠ACB=90°,∴cos∠CAB==,∵∠EAC=∠CAB,∴=,即AB=.【点睛】本题考核知识点:切线性质,锐角三角函数的应用.解题关键点:由全等三角形性质得到线段相等,根据直角三角形性质得到相应等式.25、(1)2000;(2)28.8°;(3)补图见解析;(4)36万人.【解析】分析:(1)将A选项人数除以总人数即可得;(2)用360°乘以E选项人数所占比例可得;(3)用总人数乘以D选项人数所占百分比求得其人数,据此补全图形即可得;(4)用总人数乘以样本中C选项人数所占百分比可得.详解:(1)本次接受调查的市民人数为300÷15%=2000人,(2)扇形统计图中,扇形E的圆心角度数是360°×=28.8°,(3)D选项的人数为2000×25%=500,补全条形图如下:(4)估计赞同“选育无絮杨品种,并推广种植”的人数为90×40%=36(万人).点睛:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 智能测绘数据融合技术行业跨境出海战略研究报告
- ppp工程咨询合同范例
- 代购车担保合同范例
- 四年级下册综合实践活动的心理健康教育计划
- 2025年小学秋季学期德育宣传工作计划
- 2025年苏教版六年级科学下册家长参与计划
- 地铁工程沥青路面施工安全技术措施
- 农业公司合作协议范本
- 小学阅读理解能力提升方案
- 2025年艺术创作工作总结与展览策划计划
- 稀土材料技术基础知识单选题100道及答案解析
- 生理学基础题库(46道)
- 量子储能材料的探索
- 2023年人教版六年级语文下册期末考试卷(A4打印版)
- ESG信息披露、表现和评级综合研究:国内外对比分析
- 2024年全国普法知识竞赛法律知识题库及答案
- DB5101-T135-2021城市公园分类分级管理规范
- 气象行业天气预报技能竞赛理论试题库资料(含答案)
- 水库工程土石方开挖施工方案
- 小学生中医药文化知识科普传承中医文化弘扬国粹精神课件
- 2024年福建省中考历史试卷(含标准答案及解析)
评论
0/150
提交评论