2023届陕西省西安市东城一中学数学八年级第二学期期末学业质量监测模拟试题含解析_第1页
2023届陕西省西安市东城一中学数学八年级第二学期期末学业质量监测模拟试题含解析_第2页
2023届陕西省西安市东城一中学数学八年级第二学期期末学业质量监测模拟试题含解析_第3页
2023届陕西省西安市东城一中学数学八年级第二学期期末学业质量监测模拟试题含解析_第4页
2023届陕西省西安市东城一中学数学八年级第二学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.甲、乙两个同学在四次数学模拟测试中,平均成绩都是112分,方差分别是s=5,s=12,则甲、乙两个同学的数学成绩比较稳定的是().A.甲 B.乙 C.甲和乙一样 D.无法确定2.下列各组线段中,能够组成直角三角形的一组是()A.1,2,3 B.2,3,4 C.4,5,6 D.1,3,23.若,两点都在直线上,则与的大小关系是()A. B. C. D.无法确定4.某学校组织学生进行社会主义核心价值观的知识竞赛,进入决赛的共有20名学生,他们的决赛成绩如下表所示:决赛成绩/分80859095人数2864那么20名学生决赛成绩的众数和中位数分别是()A.85,90 B.85,87.5 C.90,85 D.95,905.如图,在Rt△ABC中,∠ACB=90˚,D,E,F分别是AB,AC,AD的中点,若AB=8,则EF的长是()A.1 B.2 C.3 D.6.下列函数中,是的正比例函数的是()A. B. C. D.7.点A,B,C,D都在如图所示的由正方形组成的网格图中,且线段CD与线段AB成位似图形,则位似中心为()A.点E B.点FC.点H D.点G8.已知反比例函数,则下列结论正确的是()A.其图象分别位于第一、三象限B.当时,随的增大而减小C.若点在它的图象上,则点也在它的图象上D.若点都在该函数图象上,且,则9.如图,直线L上有三个正方形a,b,c,若a,c的面积分别为1和9,则b的面积为()A.8 B.9 C.10 D.1110.平面直角坐标系内,将点向左平移3个长度单位后得到点N,则点N的坐标是()A. B. C. D.11.如果,那么()A. B. C. D.x为一切实数12.若代数式在实数范围内有意义,则的取值范围是()A. B. C. D.且二、填空题(每题4分,共24分)13.在平面直角坐标系中,已知一次函数的图像经过,两点,若,则.(填”>”,”<”或”=”)14.若x=-1,则x2+2x+1=__________.15.飞机着陆后滑行的距离s(米)关于滑行的时间t(秒)的函数表达式是s60t1.5t2,则飞机着陆后滑行直到停下来滑行了__________米.16.某校四个植树小队,在植树节这天种下柏树的棵数分别为10,x,10,8,若这组数据的中位数和平均数相等,那么x=_____.17.已知一组数据1,2,0,﹣1,x,1的平均数是1,那么这组数据的方差是__.18.如图,小明作出了边长为2的第1个正△A1B1C1,算出了正△A1B1C1的面积.然后分别取△A1B1C1的三边中点A2、B2、C2,作出了第2个正△A2B2C2,算出了正△A2B2C2的面积.用同样的方法,作出了第3个正△A3B3C3,算出了正△A3B3C3的面积……,由此可得,第2个正△A2B2C2的面积是_______,第n个正△AnBnCn的面积是______三、解答题(共78分)19.(8分)如图,在平面直角坐标系中,直线y=x+2与x轴、y轴的交点分别为A、B,直线y=﹣2x+12交x轴于C,两条直线的交点为D;点P是线段DC上的一个动点,过点P作PE⊥x轴,交x轴于点E,连接BP;(1)求△DAC的面积;(2)在线段DC上是否存在一点P,使四边形BOEP为矩形;若存在,写出P点坐标;若不存在,说明理由;(3)若四边形BOEP的面积为S,设P点的坐标为(x,y),求出S关于x的函数关系式,并写出自变量x的取值范围.20.(8分)如图,某中学准备在校园里利用院墙的一段再围三面篱笆,形成一个矩形花园(院墙长米),现有米长的篱笆.(1)请你设计一种围法(篱笆必须用完),使矩形花园的面积为米.(2)如何设计可以使得围成的矩形面积最大?最大面积是多少?21.(8分)某商场计划购进一批自行车.男式自行车价格为元/辆,女式自行车价格为元/辆,要求男式自行车比女式单车多辆,设购进女式自行车辆,购置总费用为元.(1)求购置总费用(元)与女式单车(辆)之间的函数关系式;(2)若两种自行车至少需要购置辆,且购置两种自行车的费用不超过元,该商场有几种购置方案?怎样购置才能使所需总费用最低,最低费用是多少?22.(10分)我省松原地震后,某校开展了“我为灾区献爱心”捐款活动,八年级一班的团支部对全班50人捐款数额进行了统计,绘制出如下的统计图.(1)把统计图补充完整;(2)直接写出这组数据的众数和中位数;(3)若该校共有学生1600人,请根据该班的捐款情况估计该校捐款金额为20元的学生人数.23.(10分),若方程无解,求m的值24.(10分)甲、乙两家商场平时以同样价格出售相同的商品,春节期间两家商场都让利酬宾,其中甲商场所有商品按8折出售,乙商场对一次购物中超过200元后的价格部分打7折.

(1)以x(单位:元)表示商品原价,y(单位:元)表示购物金额,分别就两家商场的让利方式写出y关于x的函数解析式;

(2)在同一直角坐标系中画出(1)中函数的图象;

(3)春节期间如何选择这两家商场去购物更省钱?25.(12分)问题:将边长为n(n≥2)的正三角形的三条边分别n等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?探究:要研究上面的问题,我们不妨先从最简单的情形入手,进而找到一般性规律.探究一:将边长为2的正三角形的三条边分别二等分,连接各边中点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图①,连接边长为2的正三角形三条边的中点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,共有1+3=2边长为2的正三角形一共有1个.探究二:将边长为3的正三角形的三条边分别三等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图②,连接边长为3的正三角形三条边的对应三等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,共有1+3+5=32=9探究三:将边长为4的正三角形的三条边分别四等分(图③),连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)结论:将边长为n(n≥2)的正三角形的三条边分别n等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)应用:将一个边长为25的正三角形的三条边分别25等分,连接各边对应的等分点,则该三角形中边长为1的正三角形有______个和边长为2的正三角形有______个.26.已知某市2018年企业用水量x(吨)与该月应交的水费y(元)之间的函数关系如图.(1)当x≥50时,求y关于x的函数关系式;(2)若某企业2018年10月份的水费为620元,求该企业2018年10月份的用水量.

参考答案一、选择题(每题4分,共48分)1、A【解析】

根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】∵甲、乙两个同学的平均成绩都是112分,方差分别是S甲2=5,S乙2=12,∴S甲2<S乙2,∴成绩比较稳定的是甲;故选A.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.2、D【解析】

根据勾股定理的逆定理判断即可.【详解】解:1+2=3,A不能构成三角形;22+32≠42,B不能构成直角三角形;42+52≠62,C不能构成直角三角形;12+(3)2=22,D能构成直角三角形;故选:D.【点睛】本题考查了能构成直角三角形的三边关系,解题的关键是掌握勾股定理.3、C【解析】

根据一次函数的性质进行判断即可.【详解】解:∵直线的K=2>0,∴y随x的增大而增大,∵-4<-2,∴.故选C.【点睛】本题考查了一次函数的增减性,当K>0时,y随x的增大而增大,当K<0时,y随x的增大而减小.4、B【解析】

根据众数的定义,找到该组数据中出现次数最多的数即为众数;根据中位数定义,将该组数据按从小到大依次排列,处于中间位置的两个数的平均数即为中位数.【详解】∵85分的有8人,人数最多,∴众数为85分;∵处于中间位置的数为第10、11两个数为85分,90分,∴中位数为87.5分.故选B.【点睛】本题考查了众数与中位数的意义,该组数据中出现次数最多的数为众数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,解决问题时如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.5、B【解析】

利用直角三角形斜边中线定理以及三角形的中位线定理即可解决问题.【详解】解:在Rt△ABC中,∵AD=BD=4,∴CD=AB=4,∵AF=DF,AE=EC,∴EF=CD=1.故选:B.【点睛】本题考查三角形的中位线定理、直角三角形斜边上的中线的性质等知识,解题的关键是熟练掌握三角形的中位线定理以及直角三角形斜边上的中线的性质解决问题,属于中考常考题型.6、A【解析】

根据正比例函数的定义逐一判断即可.【详解】A.是正比例函数,故A符合题意;B.不是正比例函数,故B不符合题意;C.不是正比例函数,故C不符合题意;D.不是正比例函数,故D不符合题意.故选A.【点睛】此题考查的是正比例函数,掌握正比例函数的定义是解决此题的关键.7、B【解析】

根据位似图形对应点连线过位似中心判断即可.【详解】解:点A、B、C、D都在如图所示的由正方形组成的网格图中,且线段CD与线段AB成位似图形,则位似中心为点F,

故选:B.【点睛】此题考查位似变换,解题关键是弄清位似中心的定义.8、C【解析】

根据反比例函数图象上点的坐标特征、反比例函数的性质解答.【详解】解:反比例比例系数的正负决定其图象所在象限,当时图象在第一、三象限;当时图象在二、四象限,由题可知,所以A错误;当时,反比例函数图象在各象限内随的增大而减小;当时,反比例函数图象在各象限内随的增大而增大,由题可知,当时,随的增大而增大,所以B错误;比例系数:如果任意一点在反比例图象上,则该点横纵坐标值的乘积等于比例系数,因为点在它的图象上,所以,又因为点的横纵坐标值的乘积,所以点也在函数图象上,故C正确当时,反比例函数图象在各象限内随的增大而增大,由题可知,所以当时,随的增大而增大,而D选项中的并不确定是否在同一象限内,所以的大小不能粗糙的决定!所以D错误;故选:C【点睛】本题考查了反比例函数的性质,熟悉反比例函数的图象和性质是解题的关键.9、C【解析】

试题分析:运用正方形边长相等,再根据同角的余角相等可得∠BAC=∠DCE,然后证明△ACB≌△DCE,再结合全等三角形的性质和勾股定理来求解即可.解:由于a、b、c都是正方形,所以AC=CD,∠ACD=90°;∵∠ACB+∠DCE=∠ACB+∠BAC=90°,即∠BAC=∠DCE,在△ABC和△CED中,,∴△ACB≌△CDE(AAS),∴AB=CE,BC=DE;在Rt△ABC中,由勾股定理得:AC2=AB2+BC2=AB2+DE2,即Sb=Sa+Sc=1+9=10,∴b的面积为10,故选C.考点:全等三角形的判定与性质;勾股定理;正方形的性质.10、B【解析】

向左平移3个长度单位,即点M的横坐标减3,纵坐标不变,得到点N.【详解】解:点A(m,n)向左平移3个长度单位后,坐标为(m-3,n),

即点N的坐标是(m-3,n),

故选B.【点睛】本题考查坐标与图形变化-平移,在平面直角坐标系中,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.11、B【解析】∵,∴x≥0,x-6≥0,∴.故选B.12、D【解析】分析:根据被开方数大于等于1,分母不等于1列式计算即可得解.详解:由题意得,x+1≥1且x≠1,解得x≥-1且x≠1.故选D.点睛:本题考查的知识点为:分式有意义,分母不为1;二次根式的被开方数是非负数.二、填空题(每题4分,共24分)13、.【解析】试题分析:一次函数的增减性有两种情况:①当时,函数的值随x的值增大而增大;②当时,函数y的值随x的值增大而减小.由题意得,函数的,故y的值随x的值增大而增大.∵,∴.考点:一次函数图象与系数的关系.14、2【解析】

先利用完全平方公式对所求式子进行变形,然后代入x的值进行计算即可.【详解】∵x=-1,∴x2+2x+1=(x+1)2=(-1+1)2=2,故答案为:2.【点睛】本题考查了代数式求值,涉及了因式分解,二次根式的性质等,熟练掌握相关知识是解题的关键.15、1【解析】

将化为顶点式,即可求得s的最大值.【详解】解:,则当时,取得最大值,此时,故飞机着陆后滑行到停下来滑行的距离为:.故答案为:1.【点睛】本题考查二次函数的应用,解题的关键是明确题意,找出所求问题需要的条件,会将二次函数的一般式化为顶点式,根据顶点式求函数的最值.16、12或1【解析】

先根据中位数和平均数的概念得到平均数等于,由题意得到=10或9,解出x即可.【详解】∵这组数据的中位数和平均数相等,

∴=10或9,

解得:x=12或1,

故答案是:12或1.【点睛】考查了中位数的概念:一组数据按从小到大排列,最中间那个数(或最中间两个数的平均数)就是这组数据的中位数.17、【解析】

先由平均数的公式计算出x的值,再根据方差的公式计算.一般地设n个数据,x1,x2,…xn的平均数为Z,则方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2].【详解】x=1×6﹣1﹣2﹣0﹣(﹣1)﹣1=3s2=[(1﹣1)2+(2﹣1)2+(0﹣1)2+(﹣1﹣1)2+(3﹣1)2+(1﹣1)2]=.故答案为.【点睛】本题考查了方差的定义:一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.18、【解析】

根据相似三角形的性质,先求出正△A2B2C2,正△A3B3C3的面积,依此类推△AnBnCn的面积是.【详解】正△A1B1C1的面积是×22==,∵△A2B2C2与△A1B1C1相似,并且相似比是1:2,∴面积的比是1:4,则正△A2B2C2的面积是×==;∵正△A3B3C3与正△A2B2C2的面积的比也是1:4,∴面积是×==;依此类推△AnBnCn与△An﹣1Bn﹣1Cn﹣1的面积的比是1:4,第n个三角形的面积是.故答案是:,.【点睛】考查了相似三角形的判定与性质,以及等边三角形的性质,找出题中的规律是解题的关键.三、解答题(共78分)19、(1)S△DAC=1;(2)存在,点P的坐标是(5,2);(3)S=﹣x2+7x(4≤x<6).【解析】

(1)想办法求出A、D、C三点坐标即可解决问题;(2)存在.根据OB=PE=2,利用待定系数法即可解决问题;(3)利用梯形的面积公式计算即可;【详解】(1)当y=0时,x+2=0,∴x=﹣4,点A坐标为(﹣4,0)当y=0时,﹣2x+12=0,∴x=6,点C坐标为(6,0)由题意,解得,∴点D坐标为(4,4)∴S△DAC=×10×4=1.(2)存在,∵四边形BOEP为矩形,∴BO=PE当x=0时,y=2,点B坐标为(0,2),把y=2代入y=﹣2x+12得到x=5,点P的坐标是(5,2).(3)∵S=(OB+PE)•OE∴S=(2﹣2x+12)•x=﹣x2+7x(4≤x<6).【点睛】本题考查一次函数综合题、二元一次方程组、矩形的判定和性质、梯形的面积公式等知识,解题的关键是熟练掌握待定系数法,学会利用方程组确定两个函数的交点坐标,属于中考常考题型.20、见详解.【解析】

(1)设AB为xm,则BC为(40-2x)m,根据题意可得等量关系:矩形的面积=长×宽=150,根据等量关系列出方程,再解即可;

(2)根据题意和图形可以得到S与x之间的函数关系,将函数关系式化为顶点式,即可解答本题.【详解】解:(1)设AB为xm,则BC为(40-2x)m,根据题意可得:X(40-2x)=150解得:x1=,x2=15.:当x=时,40-2x=30>25.故不满足题意,应舍去.②当x=15时,40-2x=10<25,故当x=15时,满足实际要求.∴当x=15时,使矩形花园的面积为米.(2)设矩形的面积为S,则依意得:S=X(40-2x)=-2x2+40x=-2(x-5)2+50∴当x=5,时S有最大值.最大值为50.【点睛】本题考查了二次函数的实际应用,正理解题意找到等量关系列出方程是解题的关键.21、(1);(2)共种方案,购置男式自行车辆,女式自行车辆,费用最低,最低费用为元【解析】

(1)根据题意即可列出总费用y(元)与女式单车x(辆)之间的函数关系式;(2)根据题意列出不等式组,求出x的取值范围,再根据(1)的结论与一次函数的性质解答即可.【详解】解:(1)根据题意,得:即(2)由题意可得:解得:∵为整数∴,,,,共有种方案由(1)得:∵∴y随得增大而增大∴当时,y最小故共种方案,购置男式自行车辆,女式自行车辆,费用最低,最低费用为元.【点睛】本题主要考查一元一次不等式组及一次函数的应用,理解题意找到题目蕴含的相等关系或不等关系列出方程组或不等式组是解题的关键.22、(1)见解析;(2)中位数为20元、众数为20元;(3)608人.【解析】

(1)求得捐款金额为30元的学生人数,把统计图补充完整即可.(2)根据中位数和众数的定义解答;(3)根据该校共有学生1600人乘以捐款金额为20元的学生人数所占的百分数即可得到结论.【详解】解:(1)捐款金额为30元的学生人数人,

把统计图补充完整如图所示;(2)数据总数为50,所以中位数是第25、26位数的平均数,即元,数据20出现了19次,出现次数最多,所以众数是20元;(3)人,

答:该班的捐款情况估计该校捐款金额为20元的学生人数约为608人.【点睛】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.除此之外,本题也考查了平均数、中位数、众数的知识.23、m的值为-1或-6或【解析】

分式方程去分母转化为整式方程,整理后根据一元一次方程无解条件求出m的值;由分式方程无解求出x的值,代入整式方程求出m的值即可.【详解】解:方程两边同时乘以(x+2)(x-1)得:整理得:当m+1=0时,该方程无解,此时m=-1;当m+1≠0时,则原方程有增根,原方程无解,∵原分式方程有增根,∴(x+2)(x-1)=0,解得:x=-2或x=1,当x=-2时,;当x=1时,m=-6∴m的值为-1或-6或【点睛】此题考查了分式方程的解,弄清分式方程无解的条件是解本题的关键.24、(1)甲商场:y=0.8x,乙商场:y=x(0≤x≤200),y=0.7x+60(x>200);(2)详见解析;(3)x<600时,甲商场购物更省钱,x=600时,甲、乙两商场购物更花钱相同,x>600时,乙商场购物更省钱.【解析】

(1)根据两家商场的让利方式分别列式整理即可;(2)利用两点法作出函数图象即可;(3)求出两家商场购物付款相同的x的值,然后根据函数图象作出判断即可.【详解】解:(1)甲商场:y=0.8x,乙商场:y=x(0≤x≤200),y=0.7(x-200)+200=0.7x+60,即y=0.7x+60(x>200);(2)如图所示;(3)当0.8x=0.7

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论