




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,是用形状、大小完全相同的小菱形组成的图案,第1个图形中有1个小菱形,第2个图形中有4个小菱形,第3个图形中有7个小菱形,……,按照此规律,第个图形中小菱形的个数用含有的式子表示为()A. B. C. D.2.已知m2-n2=mn,则的值等于()A.1 B.0 C.-1 D.-3.如图,已知BG是∠ABC的平分线,DE⊥AB于点E,DF⊥BC于点F,DE=6,则DF的长度是()A.2 B.3 C.4 D.64.下列各式中,一定是二次根式的是()A. B. C. D.5.下列计算错误的是A. B.C. D.6.下列各式中是二次根式的为()A. B. C. D.7.若一个多边形的每个内角都相等,且都为160度,则这个多边形的内角和是()度A.2520 B.2880 C.3060 D.32408.已知,下列不等式中错误的是()A. B. C. D.9.如图,在矩形ABCD中,对角线AC、BD交与点O,以下说法错误的是()A.∠ABC=90° B.AC=BD C.OA=OB D.OA=AD10.若n为任意整数,(n+11)2-n2的值总可以被k整除,则k等于()A.11B.22C.11或22D.11的倍数11.下列式子从左到右变形错误的是()A. B. C. D.12.2019年6月19日,重庆轨道十八号线(原5A线)项目加快建设动员大会在项目土建七标段施工现场矩形,预计改线2020年全面建成,届时有效环节主城南部交通拥堵,全线已完成桩点复测,滩子口站到黄桷坪站区间施工通道等9处工点打围,在此过程中,工程队在工作了一段时间后,因雨被迫停工几天,随后工程队加快了施工进度,按时完成了施工通道工点打围。下面能反映该工程施工道路y(米)与时间x(天)的关系的大致图像是()A. B. C. D.二、填空题(每题4分,共24分)13.方程的解是_______.14.已知一组数据x1,x2,x3,x4的平均数是5,则数据x1+3,x2+3,x3+3,x4+3的平均数是____.15.若五个整数由小到大排列后,中位数为4,唯一的众数为2,则这组数据之和的最小值是_____.16.如图,长方形ABCD的边AB在x轴上,且AB的中点与原点重合,AB=2,AD=1,直线y=-x+b与矩形ABCD的边有公共点,则实数b的取值范围是________.17.一次函数的图象与y轴的交点坐标________________.18.若关于x的一元二次方程有实数根,且所有实数根均为整数,请写出一个符合条件的常数m的值:m=_____.三、解答题(共78分)19.(8分)小李从甲地前往乙地,到达乙地休息了半个小时后,又按原路返回甲地,他与甲地的距离(千米)和所用的时间(小时)之间的函数关系如图所示。(1)小李从乙地返回甲地用了多少小时?(2)求小李出发小时后距离甲地多远?20.(8分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(−4,5),(−1,3).(1)请在如图所示的网格平面内作出平面直角坐标系;(2)请作出△ABC关于y轴对称的△DEF,其中点A对应点D,点B对应点E,点C对应点F;(3)写出点E关于原点的对称点M的坐标.21.(8分)如图,在中,点是对角线的中点,点在上,且,连接并延长交于点F.过点作的垂线,垂足为,交于点.(1)求证:;(2)若.①求证:;②探索与的数量关系,并说明理由.22.(10分)如图,四边形ABCD中,AC⊥BD交BD于点E,点F、M分别是AB、BC的中点,BN平分∠ABE交AM于点N,AB=AC=BD,连接MF,NF求证:(1)BN=MN;(2)△MFN∽△BDC.23.(10分)如图,□ABCD中,BD是它的一条对角线,过A、C两点作AE⊥BD,CF⊥BD,垂足分别为E、F,延长AE、CF分别交CD、AB于M、N.(1)求证:四边形CMAN是平行四边形.(2)已知DE=4,FN=3,求BN的长.24.(10分)如图1,将边长为1的正方形ABCD压扁为边长为1的菱形ABCD.在菱形ABCD中,∠A的大小为α,面积记为S.(1)请补全下表:30°45°60°90°120°135°150°S1(2)填空:由(1)可以发现正方形在压扁的过程中,菱形的面积随着∠A大小的变化而变化,不妨把菱形的面积S记为S(α).例如:当α=30°时,;当α=135°时,.由上表可以得到(______°);(______°),…,由此可以归纳出.(3)两块相同的等腰直角三角板按如图的方式放置,AD=,∠AOB=α,试探究图中两个带阴影的三角形面积是否相等,并说明理由(注:可以利用(2)中的结论).25.(12分)如图,直线交x轴于点A,直线CD与直线相交于点B,与x轴y轴分别交于点C,点D,已知点B的横坐标为,点D的坐标为.(1)求直线CD的解析式;(2)求的面积.26.如图,在正方形ABCD中,E是AD的中点,F是AB上一点,且AF=AB.求证:CE⊥EF.
参考答案一、选择题(每题4分,共48分)1、B【解析】
根据图形的变化规律即可求出第个图形中小菱形的个数.【详解】根据第1个图形中有1个小菱形,第2个图形中有4个小菱形,第3个图形中有7个小菱形,每次增加3个菱形,故第个图形中小菱形的个数为1+3(n-1)=个,故选B.【点睛】此题主要考查图形的规律探索,解题的关键是根据图形的变化找到规律进行求解.2、C【解析】
根据分式的运算法则即可求出答案.【详解】解:∵m2-n2=mn,且mn≠0,∴,即,故选:C.【点睛】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.3、D【解析】
根据角平分线的性质进行求解即可得.【详解】∵BG是∠ABC的平分线,DE⊥AB,DF⊥BC,∴DF=DE=6,故选D.【点睛】本题考查了角平分线的性质,熟练掌握角平分线上的点到角的两边的距离相等是解题的关键.4、C【解析】
根据二次根式的定义逐个判断即可.【详解】解:A、不是二次根式,故本选项不符合题意;B、不是二次根式,故本选项不符合题意;C、是二次根式,故本选项符合题意;D、当x<0时不是二次根式,故本选项不符合题意;故选:C.【点睛】本题考查了二次根式的定义,熟记二次根式的定义是解此题的关键,注意:形如(a≥0)的形式,叫二次根式.5、A【解析】
根据根式的计算法则逐个识别即可.【详解】A错误,;B.,正确;C.,正确D.,正确故选A.【点睛】本题主要考查根式的计算,特别要注意算术平方根的计算.6、A【解析】【分析】定义:一般地,形如(a≥0)的代数式叫做二次根式.根据定义可以进行逐个判断.【详解】A.符合定义条件,故正确;B.,没有强调a≥0故错;C.根指数是3,不是二次根式;D.中,-3<0,故错.故正确选项是A.【点睛】此题考核二次根式的定义.只要分析被开方数的符号,看根指数是否为2就容易判断.7、B【解析】
n边形的内角和是(n-2)180°,由此列方程求解.【详解】设这个多边形的边数为n,则(n-2)180°=160°n,解得,n=18.则(n-2)180°=(18-2)×180°=2880°.故选B.【点睛】本题主要考查了多边形的内角和,n边形的内角和是(n-2)180°.8、D【解析】
不等式两边加或减某个数或式子,乘或除以同一个正数,不等号的方向不变;不等式两边乘或除以一个负数,不等号的方向改变.【详解】解:∵a<b,∴3a<3b,A选项正确;a+5<b+5,B选项正确;a-5<b-5,C选项正确;-3a>-3b,D选项错误;故选:D.【点睛】本题主要考查不等式的性质,主要考查不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.9、D【解析】试题分析:本题考查了矩形的性质;熟练掌握矩形的性质是解决问题的关键.矩形的性质:四个角都是直角,对角线互相平分且相等;由矩形的性质容易得出结论.∵四边形ABCD是矩形,∴∠ABC=∠BCD=∠CDA=∠BAD=90°,AC=BD,OA=AC,OB=BD,∴OA=OB,∴A、B、C正确,D错误考点:矩形的性质10、D【解析】试题分析:根据平方差公式分解因式即可判断。∵(n+11)2-n2=(n+11+n)(n+11-n)=11(2n+11),∴(n+11)2-n2的值总可以被11的倍数整除,故选D.考点:本题考查的是因式分解的简单应用点评:解答本题的关键是熟练掌握平方差公式:a2-b2=(a+b)(a-b).11、C【解析】
根据分式的性质逐个判断即可.【详解】解:,故选:C.【点睛】本题主要考查分式的基本性质,分式的分子分母同时乘以一个不为0的数,不会改变分式的大小.12、C【解析】
根据题意,该工程中途被迫停工几天,后来加速完成,即可得到图像.【详解】解:根据题意可知,工程队在工作了一段时间后,因雨被迫停工几天,随后工程队加快了施工进度,则C的图像符合题意;故选择:C.【点睛】本题主要考查对函数图象的理解和掌握,能根据实际问题所反映的内容来观察与理解图象是解答此题的关键.二、填空题(每题4分,共24分)13、【解析】
观察可得最简公分母是,方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【详解】解:两边同时乘以得,,解得,,检验:当时,,不是原分式方程的解;当时,,是原分式方程的解.故答案为:.【点睛】本题考查了解分式方程:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.14、8【解析】
根据平均数的性质知,要求x1+3,x2+3,x3+3,x4+3的平均数,只要把数x1,x2,x3,x4的和表示出即可.【详解】解:x1,x2,x3,x4的平均数为5x1+x2+x3+x4=45=20,x1+3,x2+3,x3+3,x4+3的平均数为:=(x1+3+x2+3+x3+3+x3+3)4=(20+12)4=8,故答案为:8.【点睛】本题主要考查算术平均数的计算.15、19【解析】
根据“五个整数由小到大排列后,中位数为4,唯一的众数为2”,可知此组数据的第三个数是4,第一个和第二个数是2,据此可知当第四个数是5,第五个数是6时和最小.【详解】∵中位数为4∴中间的数为4,又∵众数是2∴前两个数是2,∵众数2是唯一的,∴第四个和第五个数不能相同,为5和6,∴当这5个整数分别是2,2,4,5,6时,和最小,最小是2+2+4+5+6=19,故答案为19.【点睛】本题考查中位数和众数,能根据中位数和众数的意义进行逆向推理是解决本题的关键.在读题时需注意“唯一”的众数为2,所以除了两个2之外其它的数只能为1个.16、−1≤b≤1【解析】
由AB,AD的长度可得出点A,C的坐标,分别求出直线经过点A,C时b的值,结合图象即可得出结论.【详解】解:∵AB=1,AD=1,∴点A的坐标为(−1,0),点C的坐标为(1,1).当直线y=−x+b过点A时,0=1+b,解得:b=−1;当直线y=−x+b过点C时,1=−1+b,解得:b=1.∴当直线y=−x+b与矩形ABCD的边有公共点时,实数b的取值范围是:−1≤b≤1.故答案为:−1≤b≤1.【点睛】本题考查了一次函数图象上点的坐标特征以及矩形的性质,利用极限值法求出直线经过点A,C时b的值是解题的关键.17、(0,-2)【解析】
根据一次函数与y轴的交点得横坐标等于0,将x=0代入y=x-2,可得y的值,从而可以得到一次函数y=x-2的图象与y轴的交点坐标.【详解】将x=0代入y=x−2,可得y=−2,故一次函数y=x−2的图象与y轴的交点坐标是(0,−2).故答案为:(0,-2)【点睛】此题考查一次函数图象上点的坐标特征,解题关键在于一次函数与y轴的交点得横坐标等于018、0(答案不唯一)【解析】
利用判别式的意义得到△=62-4m≥0,解不等式得到m的范围,在此范围内取m=0即可.【详解】△=62-4m≥0,解得m≤9;当m=0时,方程变形为x2+6x=0,解得x1=0,x2=-6,所以m=0满足条件.故答案为:0(答案不唯一).【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.三、解答题(共78分)19、(1)小时;(2)小李出发小时后距离甲地千米;【解析】
(1)根据题意可以得到小李从乙地返回甲地用了多少小时;(2)根据题意可以求得小李返回时对应的函数解析式,从而可以求得小李出发5小时后距离甲地的距离;【详解】解:(1)由题意可得,(小时),答:小李从乙地返回甲地用了小时;(2)设小李返回时直线解析式为,将分别代入得,,解得,,,当时,,答:小李出发小时后距离甲地千米;【点睛】此题考查一次函数的应用,解题关键在于列出方程20、(1)见解析;(2)见解析;(3)(−2,−1).【解析】
(1)根据题意画出坐标系即可;(2)根据关于y轴对称的点的坐标特点作出△DEF即可;(3)根据中心对称的特点直接写出答案即可.【详解】(1)(2)如图:(3)根据图象得到点E的坐标为(2,1),其关于原点对称的点的坐标为(−2,−1).【点睛】此题考查作图-轴对称变换,解题关键在于掌握作图法则.21、(1)见解析;(2)①见解析,②,理由见解析.【解析】
(1)根据平行四边形的性质得到∠OAF=∠OCE,证明△OAF≌△OCE,根据全等三角形的对应边相等证明结论;(2)①过A作AM⊥BC于M,交BG于K,过G作GN⊥BC于N,根据三角形的外角性质得到∠BAG=∠BGA;②证明△AME≌△BNG,根据全等三角形的性质得到ME=NG,根据等腰直角三角形的性质得到BE=GC,根据(1)中结论证明即可.【详解】(1)证明:∵四边形是平行四边形,∴,,∴,在和中,,∴∴,∵,∴;(2)①过作于,交于,过作于,则,∵,∴,∵,∴,,∵,∴,又,∴,设,则,,∴;②,理由如下:∵,∴,∴,在和中,,∴,∴,在等腰中,,∴,∴,∵,∴.【点睛】本题主要考查了平行四边形的性质,全等三角形的判定与性质,等腰直角三角形的性质以及勾股定理的综合运用,解决问题的关键是作辅助线构造全等三角形以及等腰直角三角形,利用全等三角形的对应边相等得出结论.22、(1)见解析;(2)见解析【解析】
(1)根据等腰三角形的性质,可得是高线、顶角的角平分线,根据直角三角形的性质,可得,根据三角形外角的性质,可得,进而可知是等腰直角三角形,即得.(2)根据三角形中位线的性质,可得与的关系,根据等量代换,可得与的关系,根据等腰直角三角形,可得与的关系,根据等量代换,可得与的关系,根据同角的余角相等,可得与的关系,根据两边对应成比例且夹角相等的两个三角形相似,可得答案.【详解】(1)证明:∵,点是的中点∴,平分∵平分∴∵∴∴∴∴是等腰直角三角形∴(2)证明:∵点,分别是,的中点,∴,∵∴,即∵是等腰直角三角形∴,即∴∵∴∵∴∵∴∴∴∴【点睛】本题考查了相似三角形的判定和性质、等腰直角三角形的判定和性质、三角形的内角外角中位线相关性质,综合性较强,难度较大.23、(1)详见解析;(2)1.【解析】试题分析:(1)通过AE⊥BD,CF⊥BD证明AE∥CF,再由四边形ABCD是平行四边形得到AB∥CD,由两组对边分别平行的四边形是平行四边形可证得四边形CMAN是平行四边形;(2)证明△MDE≌∠NBF,根据全等三角形的性质可得DE=BF=4,再由勾股定理得BN=1.试题解析:(1)证明:∵AE⊥BDCF⊥BD∴AE∥CF又∵四边形ABCD是平行四边形∴AB∥CD∴四边形CMAN是平行四边形(2)由(1)知四边形CMAN是平行四边形∴CM=AN.又∵四边形ABCD是平行四边形∴AB=CD,∠MDE=∠NBF.∴AB-AN=CD-CM,即DM=BN.在△MDE和∠NBF中∠MDE=∠NBF,∠DEM=∠BFN=90°,DM=BN∴△MDE≌∠NBF∴DE=BF=4,由勾股定理得BN===1.答:BN的长为1.考点:平行四边形的判定与性质;全等三角形的判定与性质;勾股定理.24、(1);;;;(2)120;30;α;(3)两个带阴影的三角形面积相等,证明见解析.【解析】分析:(1)过D作DE⊥AB于点E,当α=45°时,可求得DE,从而可求得菱形的面积S,同理可求当α=60°时S的值,当α=120°时,过D作DF⊥AB交BA的延长线于点F,则可求得DF,可求得S的值,同理当α=135°时S的值;(2)根据表中所计算出的S的值,可得出答案;(3)将△ABO沿AB翻折得到菱形AEBO,将△CDO沿CD翻折得到菱形OCFD.利用(2)中的结论,可求得△AOB和△COD的面积,从而可求得结论.详解:(1)当α=45°时,如图1,过D作DE⊥AB于点E,则DE=AD=,∴S=AB•DE=,同理当α=60°时S=,当α=120°时,如图2,过D作DF⊥AB,交BA的延长线于点F,则∠DAE=60°,∴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安全工程师职业发展指导试题及答案
- 水管流水测试题及答案
- 新能源汽车市场的品牌差异化策略试题及答案
- 新零售趋势下实体零售门店线上线下融合营销策略研究报告
- 黄埔招教面试真题及答案
- 食品添加剂安全评估与2025年食品加工工艺改进研究报告
- 2025年消防安全考试题及答案
- 社交废物面试题及答案
- 深度分析:2025年环境监测行业智能化发展与数据质量控制创新
- 快递网管面试题及答案
- 单螺杆泵说明书
- JT-T-1213-2018陆港设施设备配置和运营技术规范
- 五年级劳动课件收纳
- 行政复议法-形考作业2-国开(ZJ)-参考资料
- 2023-2024学年人教版数学八年级下册期中复习卷
- (高清版)TDT 1044-2014 生产项目土地复垦验收规程
- MBA-组织行为学课件
- 白云枕头-模板参考
- 奥迪汽车介绍
- 心衰超滤治疗
- 设备管理案例综合经验
评论
0/150
提交评论