2023年铜川市重点中学数学八下期末复习检测试题含解析_第1页
2023年铜川市重点中学数学八下期末复习检测试题含解析_第2页
2023年铜川市重点中学数学八下期末复习检测试题含解析_第3页
2023年铜川市重点中学数学八下期末复习检测试题含解析_第4页
2023年铜川市重点中学数学八下期末复习检测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.关于x的一元二次方程2x2+4x﹣c=0有两个不相等的实数根,则实数c可能的取值为()A.﹣5 B.﹣2 C.0 D.﹣82.如图,在▱ABCD中,AC与BD交于点O,下列说法正确的是()A.AC=BD B.AC⊥BD C.AO=CO D.AB=BC3.某市政工程队准备修建一条长1200米的污水处理管道.在修建完400米后,为了能赶在讯期前完成,采用新技术,工作效率比原来提升了25%.结果比原计划提前4天完成任务.设原计划每天修建管道x米,依题意列方程得()A. B.C. D.4.下列几组数中,不能作为直角三角形三条边长的是()A.3,4,5 B.5,12,13 C.7,24,25 D.9,39,405.若关于x的分式方程无解,则m的值为()A.一l.5 B.1 C.一l.5或2 D.一0.5或一l.56.若分式的值为0,则x等于()A.﹣l B.﹣1或2 C.﹣1或1 D.17.已知:如图,菱形中,对角线、相交于点,且,,点是线段上任意一点,且,垂足为,,垂足为,则的值是A.12 B.24 C.36 D.488.正八边形的每一个内角的度数为:()A.45° B.60° C.120° D.135°9.如图,已知D、E分别是△ABC的AB、AC边上的一点,DE∥BC,△ADE与四边形DBCE的面积之比为1:3,则AD:AB为()A.1:4 B.1:3 C.1:2 D.1:510.如图,矩形ABCD的面积为10cm2,它的两条对角线交于点O1,以AB、AO1为两邻边作平行四边形ABC1O1,平行四边形ABC1O1的对角线交于点O2,同样以AB、AO2为两邻边作平行四边形ABC2O2,…,依此类推,则平行四边形ABCnOn的面积为()A.cm2 B.cm2 C.cm2 D.cm2二、填空题(每小题3分,共24分)11.计算:=_______________.12.若,则的值为__________,的值为________.13.计算:×=____________.14.如图,在△ABC中,∠B=90°,AB=12mm,BC=24mm,动点P从点A开始沿边AB向B以2mm/s的速度移动(不与点B重合),动点Q从点B开始沿边BC向C以4mm/s的速度移动(不与点C重合).如果P、Q分别从A、B同时出发,那么经过秒,四边形APQC的面积最小.15.如图,已知矩形,,,点为中点,在上取一点,使的面积等于,则的长度为_______.16.在两条垂直相交的道路上,一辆自行车和一辆摩托车相遇后又分别向北向东驶去,若自行车与摩托车每秒分别行驶7.5米、10米,则10秒后两车相距______米;17.一个多边形的内角和等于1800°,它是______边形.18.已知a2-2ab+b2=6,则a-b=_________.三、解答题(共66分)19.(10分)已知关于的一次函数,求满足下列条件的m的取值范围:(1)函数值y随x的增大而增大;(2)函数图象与y轴的负半轴相交;(3)函数的图象过原点.20.(6分)如图所示,方格纸中的每个小方格都是边长为个单位长度的正方形,在建立平面直角坐标系后,的顶点均在格点上.①以原点为对称中心,画出与关于原点对称的.②将绕点沿逆时针方向旋转得到,画出,并求出的长.21.(6分)某县教育局为了了解学生对体育立定跳远()、跳绳()、掷实心球()、中长跑()四个项目的喜爱程度(每人只选一项),确定中考体育考试项目,特对八年级某班进行了调查,并绘制成如下频数、频率统计表和扇形统计图:(1)求出这次调查的总人数;(2)求出表中的值;(3)若该校八年级有学生1200人,请你算出喜爱跳绳的人数,并发表你的看法.22.(8分)在平面直角坐标系中,已知点,,,点与关于轴对称.(1)写出点所在直线的函数解析式;(2)连接,若线段能构成三角形,求的取值范围;(3)若直线把四边形的面积分成相等的两部分,试求的值.23.(8分)如图,是等边三角形,是中线,延长至,.(1)求证:;(2)请在图中过点作交于,若,求的周长.24.(8分)先化简再求值:,其中a=-2。25.(10分)如图1,在△ABC中,AB=AC,∠ABC=α,D是BC边上一点,以AD为边作△ADE,使AE=AD,∠DAE+(1)直接写出∠ADE的度数(用含α的式子表示);(2)以AB,AE为边作平行四边形ABFE,①如图2,若点F恰好落在DE上,求证:BD=CD;②如图3,若点F恰好落在BC上,求证:BD=CF.26.(10分)如图,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,E、F在菱形的边BC,CD上.(1)证明:BE=CF.(2)当点E,F分别在边BC,CD上移动时(△AEF保持为正三角形),请探究四边形AECF的面积是否发生变化?若不变,求出这个定值;如果变化,求出其最大值.(3)在(2)的情况下,请探究△CEF的面积是否发生变化?若不变,求出这个定值;如果变化,求出其最大值.

参考答案一、选择题(每小题3分,共30分)1、C【解析】

利用一元二次方程根的判别式(△=b2﹣4ac)可以判断方程的根的情况,有两个不相等的实根,即△>1.【详解】解:依题意,关于x的一元二次方程,有两个不相等的实数根,即△=b2﹣4ac=42+8c>1,得c>﹣2根据选项,只有C选项符合,故选:C.【点睛】本题考查一元二次方程的根的判别式,利用一元二次方程根的判别式(△=b2-4ac)可以判断方程的根的情况:一元二次方程的根与根的判别式有如下关系:①当△>1时,方程有两个不相等的实数根;②当△=1时,方程有两个相等的实数根;③当△<1

时,方程无实数根,但有2个共轭复根.上述结论反过来也成立.2、C【解析】试题分析:由平行四边形的性质容易得出结论.解:∵四边形ABCD是平行四边形,∴AO=CO;故选C.3、B【解析】

设原计划每天修建管道x米,则原计划修建天数为天.实际前面400米,每天修建管道x米,需要天,剩下的1200-400=800米,每天修建管道x(1+25%)米,需要天.根据实际天数比原计划提前4天完成任务即可得出数量关系.【详解】设原计划每天修建管道x米,根据题意的–=4,--=4,-=4,选项B正确.【点睛】本题主要考查了分式方程的应用,解题的关键是首先弄清题意,根据关键描述语,找到合适的等量关系;难点是得到实际修建的天数.4、D【解析】

由勾股定理的逆定理,只要验证两小边的平方和是否等于最长边的平方,即可解答.【详解】解:A、32+42=52,能构成直角三角形,不符合题意;

B、122+52=132,能构成直角三角形,不符合题意;

C、72+242=252,能构成直角三角形,不符合题意;

D、92+392≠402,不能构成直角三角形,符合题意;

故选:D.【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.5、D【解析】方程两边都乘以x(x-1)得:(2m+x)x-x(x-1)=2(x-1),即(2m+1)x=-6,①①∵当2m+1=0时,此方程无解,∴此时m=-0.2,②∵关于x的分式方程无解,∴x=0或x-1=0,即x=0,x=1.当x=0时,代入①得:(2m+1)×0=-6,此方程无解;当x=1时,代入①得:(2m+1)×1=-6,解得:m=-1.2.∴若关于x的分式方程无解,m的值是-0.2或-1.2.故选D.6、D【解析】

直接利用分式的值为零则分子为零分母不为零进而得出答案.【详解】解:∵分式的值为0,∴|x|﹣1=0,x﹣2≠0,x+1≠0,解得:x=1.故选D.【点睛】此题主要考查了分式有意义的条件,正确把握定义是解题关键.7、A【解析】

由菱形的性质可得AC⊥BD,AO=CO=3,BO=DO=4,通过证明△AFP∽△AOD,△PED∽△AOD,可得,,即可求解.【详解】解:四边形是菱形,,,,,,,故选:.【点睛】本题考查了菱形的性质,相似三角形的判定和性质,利用相似比求解是本题的关键.8、D【解析】

180°-360°÷8=135°,故选D.【点睛】错因分析较易题.失分原因:没有掌握正多边形的内角公式.9、C【解析】

先根据已知条件求出△ADE∽△ABC,再根据面积的比等于相似比的平方解答即可.【详解】解:∵S△ADE:S四边形DBCE=1:3,∴S△ADE:S△ABC=1:4,又∵DE∥BC,∴△ADE∽△ABC,相似比是1:1,∴AD:AB=1:1.故选:C.【点睛】此题考查相似三角形的判定与性质,解题关键在于求出△ADE∽△ABC10、D【解析】

根据矩形的性质对角线互相平分可知O1是AC与DB的中点,根据等底同高得到S△ABO1=S矩形,又ABC1O1为平行四边形,根据平行四边形的性质对角线互相平分,得到O1O2=BO2,所以S△ABO2=S矩形,…,以此类推得到S△ABO5=S矩形,而S△ABO5等于平行四边形ABC5O5的面积的一半,根据矩形的面积即可求出平行四边形ABC5O5和平行四边形AB∁nOn的面积.【详解】解:∵设平行四边形ABC1O1的面积为S1,∴S△ABO1=S1,又∵S△ABO1=S矩形,∴S1=S矩形=5=;设ABC2O2为平行四边形为S2,∴S△ABO2=S2,又∵S△ABO2=S矩形,∴S2=S矩形=;,…,∴平行四边形AB∁nOn的面积为(cm2).故选D.【点睛】此题考查了矩形及平行四边形的性质,要求学生审清题意,找出面积之间的关系,归纳总结出一般性的结论.考查了学生观察、猜想、验证及归纳总结的能力.二、填空题(每小题3分,共24分)11、1【解析】

根据实数的性质化简即可求解.【详解】=1+2=1故答案为:1.【点睛】此题主要考查实数的运算,解题的关键是熟知零指数幂与负指数幂的运算.12、,【解析】

令,用含k的式子分别表示出,代入求值即可.【详解】解:令,则,所以,.故答案为:(1).,(2).【点睛】本题考查了分式的比值问题,将用含同一字母的式子表示是解题的关键.13、【解析】

直接利用二次根式乘法运算法则化简得出答案.【详解】=.故答案为.【点睛】此题主要考查了二次根式的乘法运算,正确掌握二次根式乘法运算法则是解题关键.14、3【解析】

根据等量关系“四边形APQC的面积=三角形ABC的面积﹣三角形PBQ的面积”列出函数关系,求得最小值.【详解】设P、Q同时出发后经过的时间为ts,四边形APQC的面积为Smm2,则有:S=S△ABC﹣S△PBQ==4t2﹣24t+144=4(t﹣3)2+1.∵4>0∴当t=3s时,S取得最小值.【点睛】考点:二次函数的应用.15、【解析】

设DP=x,根据,列出方程即可解决问题.【详解】解:设DP=x∵,AD=BC=6,AB=CD=8,又∵点为中点∴BQ=CQ=3,∴18=48−⋅x⋅6−(8−x)⋅3−⋅8⋅3,∴x=4,∴DP=4故答案为4cm【点睛】本题考查了利用矩形的性质来列方程求线段长度,正确列出方程是解题的关键.16、1【解析】

直接根据题意画出直角三角形,进而利用勾股定理得出答案.【详解】解:如图所示:由题意可得,在Rt△ACB中,AC=75m,BC=100m,

则AB==1(m),

故答案为:1.【点睛】本题考查了勾股定理的应用,正确画出图形是解题的关键.17、十二【解析】

根据多边形的内角和公式列方程求解即可;【详解】设这个多边形是n边形,

由题意得,(n-2)•180°=1800°,

解得n=12;故答案为十二【点睛】本题考查了多边形的内角和,关键是掌握多边形的内角和公式.18、【解析】由题意得(a-b)2="6,"则=三、解答题(共66分)19、(1),(2),(3)【解析】【分析】根据一次函数的性质,结合条件列出不等式或等式求出m的取值范围.【详解】解:(1)若函数值y随x的增大而增大,则1-2m>0,所以,;(2)若函数图象与y轴的负半轴相交,则m-1<0,1-2m≠0解得;(3)若函数的图象过原点,则m-1=0,解得m=1【点睛】本题考核知识点:一次函数的性质.解题关键点:熟记一次函数的性质.20、①见解析;②【解析】试题分析:(1)根据对称点平分对应点连线可找到各点的对应点,从而顺次连接即可得出△A1B1C1;

(2)根据图形旋转的性质画出△A2B2C2,并求得的长.试题解析:①②∴即为所求设点为点,∵,,∴,.∵,∴.∵旋转,∴,.∵,,∴,.∵,∴.21、(1)60;(2);(3)240人,看法见解析【解析】

(1)用C科目人数除以其所占比例;

(2)根据频数=频率×总人数求解可得;

(3)总人数乘以样本中B科目人数所占比例,根据图表得出正确的信息即可.【详解】解:(1)这次调查的总人数为6÷(36÷360)=60(人);

(2)a=60×0.5=30(人);b=12÷60=0.2;c=6÷60=0.1;d=0.2×60=12(人);

(3)喜爱跳绳的人数为1200×0.2=240(人),

由扇形统计图知喜爱立定跳远的人数占总人数的一半,是四个学科中人数最多的科目.【点睛】本题考查了扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.用到的知识点为:总体数目=部分数目÷相应百分比.22、(1);(2)时,线段能构成三角形;(3)当时,把四边形的面积分成相等的两部分.【解析】

(1)根据题意可得点,可得的当横坐标为m时,纵坐标为-3m+22,因此可得点C的所在直线的解析式.(2)首先利用待定系数法计算直线AB的解析式,再利用点C是否在直线上,来确定是否构成三角形,从而确定m的范围.(3)首先计算D点坐标,设的中点为,过作轴于,轴于,进而确定E点的坐标,再计算DE所在直线的解析式,根据点C在直线DE上可求得m的值.【详解】解:(1)根据题意可得点,可得的当横坐标为m时,纵坐标为-3m+22,所以(2)设所在直线的函数解析式为,将点,代入得,解得,∴当点在直线上时,线段不能构成三角形将代入,得解得,∴时,线段能构成三角形;(3)根据题意可得,设的中点为,过作轴于,轴于,根据三角形中位线性质可知,由三角形中线性质可知,当点在直线上时,把四边形的面积分成相等的两部分,设直线的函数解析式为,将,代入,得,解得,∴,将代入,得,解得,∴当时,把四边形的面积分成相等的两部分.【点睛】本题主要考查一次函数的性质,本题难度系数较大,关键在于根据点在直线上来求参数的.23、(1)详见解析;(2)48.【解析】

根据等边三角形的性质得到,再根据外角定理与等腰三角形的性质得到,故,即可证明;(2)根据含30°的直角三角形得到C的长即可求解.【详解】(1)证明:是等边三角形,是中线,,又,.又,.,(等角对等边);(2)于,,是直角三角形,,,,是等边三角形,是中线,,是等边三角形的周长.【点睛】此题主要考查等边三角形的性质,解题的关键是熟知等腰三角形的判定与性质及含30°的直角三角形的性质.24、,3【解析】

可先对括号内,进行化简约分,对括号外除法化乘法,然后对括号内同分母分式加法进行计算,最后进行约分即可得到化简之后的结果,将a=-2代入化简之后的结果进行计算.【详解】原式=当a=-2,原式=3【点睛】本题考查分式的化简求值,对于分式的化简在运算过程中要根据运算法则注意运算顺序,在化简过程中可先分别对分母分子因式分解,再进行约分计算.25、(1)α;(2)证明见解析.【解析】试题分析:(1)由在△ABC中,AB=AC,∠ABC=α,可求得∠BAC=180°-2α,又由AE=AD,∠DAE+∠BAC=180°,可求得∠DAE=2α,继而求得∠ADE的度数;(2)①由四边形ABFE是平行四边形,易得∠EDC=∠ABC=α,则可得∠ADC=∠ADE+∠EDC=90°,证得AD⊥BC,又由AB=AC,根据三线合一的性质,即可证得结论;②由在△ABC中,AB=AC,∠ABC=α,可得∠B=∠C=α,四边形ABFE是平行四边形,可得AE∥BF,AE=BF.即可证得:∠EAC=∠C=α,又由(1)可证得AD=CD,又由AD=AE=BF,证得结论.试题解析:(1)∠ADE=90°-α.(2)①证明:∵四边形ABFE是平行四边形,∴AB∥EF.∴∠EDC=∠ABC=α.由(1)知,∠ADE=90°-α,∴∠ADC=∠ADE+∠EDC=90°.∴AD⊥BC.∵AB=AC,∴BD=CD.②证明:∵AB=AC,∠ABC=α,∴∠C=∠B=α.∵四边形ABFE是平行四边形,∴AE∥BF,AE=BF.∴∠EAC=∠C=α.由(1)知,∠DAE=2α,∴∠DAC=α.∴∠DAC=∠C.∴AD=CD.∵AD=AE=BF,∴BF=CD.∴B

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论