立体观测释文_第1页
立体观测释文_第2页
立体观测释文_第3页
立体观测释文_第4页
立体观测释文_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

立体观测释文:利用人眼借助立体镜对立体像对进行观察和测量的过程。当用立体镜观察立体像对时,像片上影像的不同左右视差反映到双眼就构成生理视差,从而产生与实物一样的立体感觉。具有纵向或旁向重叠的两幅遥感图像可以构成立体像对;而对雷达图像来说,同一地区不同视向的雷达图像也可以构成立体像对。通过立体观测叮以确定物体的形状和高度,有助于识别物体的性质和类型。实现立体观测的方法很多,除立体镜外,尚有互补色立体、闭闪法立体、双像投影、双像放映、偏振光、激光干涉全息等立体视觉等。立体效应释文:在天然实体三维观察和人造立体观测中,由于人眼的生理视差能够感觉、判断物体的远近和立体模型的高低起伏,物体表面的凹凸变化,即可察觉出的细微的视差量,称为立体的感觉,或景深感觉。立体像对上同名地物景点的左右视差反映在人眼中形成生理视差,产生立体视觉效应。由于左右像片的安置关系可以产生正立体和负立体效应。当立体像对基线与眼基线垂直安放时,就会失去立体效应,称为零位立体效应。航空摄影测量-正文根据在航空飞行器上拍摄的地面像片,获取地面信息,测绘地形图。主要用于测绘1:1000〜1:100000各类比例尺的地形图。航摄像片是航空摄影测量的基本资料,是用画幅式航摄机,按照严格的航摄要求摄得的(见航空摄影)。原理单张像片测图的基本原理是中心投影的透视变换,而摄影过程的几何反转则是立体测图的基本原理。广义来说,前一情况的基本原理也是摄影过程的几何反转。20世纪30年代以后,摄影过程的几何反转都是应用各种结构复杂的光学机械的精密仪器来实现的。50年代,开始应用数学解析的方式来实现。图1就是用光学投影方法实现摄影几何反转的示意图。图中假设两张相邻的航摄像片覆盖了同一地面AMDC,它们在左片P上的构像为amdc,右片P上的构像为amdc,两摄站点S和S间的距离为基线B。如将这1 1111 2 2222 1 2两张像片装回与摄影镜箱相同的投影器内,后面用聚光器照明,就会投射出同摄影时相似的投影光束。再把这两个投影光束安置在与摄影时相同的空间方位,并使两投影中心间的距离为b(b为按测图比例尺缩小的摄影基线),此时所有的同名投影光线都应成对相交,从而得出一个地面的立体模型A'M'D'C'。这时,用一个空间的浮游测标(可作三维运动)去量测它,就可画得地形图。理论航空摄影测量的主题,是将地面的中心投影(航摄像片)变换为正射投影(地形图)。这一问题可以采取许多途径来解决。如图解法、光学机械法(亦称模拟法)和解析法等。在每一种方法中还可细分出许多具体方法,而每种具体方法又有其特有的理论。其中有些概念和理论是基础性的,带有某些共性,如像片的内方位元素和外方位元素,像点同地面点的坐标关系式,共线条件方程,像对的相对定向,模型的绝对定向和立体观测原理等。像片的内方位元素和外方位元素内方位元素用以确定摄影物镜后节点(像方)同像片间的相关位置。利用它可以恢复摄影时的摄影光线束。内方位元素系指摄影机主距f和摄影机物镜后节点在像平面的正投影位于框标坐标系中的坐标值(x°,y°)。这些数值通过对航摄机鉴定得出,故内方位元素总是已知的。确定摄影光线束在摄影时的空间位置的数据,叫做像片或摄影的外方位元素。外方位元素有6个数值,包括摄影中心S(图2)在某一空间直角坐标系中的3个坐标值X、Y、Z和用来确定摄影光线束在空间方位的3个sss角定向元素,如嗅、3、k角。这些外方位元素都是针对着某一个模型坐标系O—XYZ而定义的。模型坐标系的X坐标轴近似地位于摄影的基线方向,Z坐标轴近似地与地面点的高程方向相符。在模型坐标系内所建立的立体模型必须在其后经绝对定向的过程才能取得立体模型的正确方位。像点坐标变换式图2中,像点a在以摄影中心S为原点,摄影主光轴z坐标轴的像空间坐标系(S-xyz)中的坐标为x.、y.、z「-f。此时以S为原点再建立一个辅助坐标系(S-uvw)其中3个坐标轴u、v、w分别与模型坐标的3个坐标轴X、Y、Z相平行。a点在此辅助坐标系中的坐标设为u、v、w,则其变换关系aaa式为:R为旋转矩阵,它是由像空间坐标系与辅助坐标系的相应坐标轴间夹角的余弦(称方向余弦)组成,而这些方向余弦都是像片的3个角定向元素的函数。这是一个重要的基本公式,因为有很多理论公式或作业公式就是在此基础上进一步演化得出的。例如,在解析摄影测量中有广泛应用的“共线条件方程式”,就是根据它的反算式作进一步演化得出。相对定向确定像片对相互位置关系的过程。模拟法相对定向是在立体测图仪上进行。其理论基础是使空间所有的同名光线都成对相交。当同名光线不相交时,则在仪器的观测系统中可以观察到上下视差(常用Q表示)。上下视差就是两条同名射线在空间不相交时在垂直于摄影基线方向中存在的距离。此时将投影器作微小的直线移动或转动,就可以消除这个距离。理论上只要能够在适当分布的5个点处同时消除该点处的上下视差,就认为已经获得在这个立体像对内全部上下视差的消除,从而完成了相对定向,得出立体模型。相对定向的解析法是在像片上量测各同名像点的像点坐标,例如对左像片为x1、y1,对右像片为x2、y2。根据同名射线共面条件的理论可以推导出这些量测值与相对定向元素的关系式。理论上测得5对同名像点的像点坐标值,就能够解算出该像片对的5个相对定向元素。同名点在左右像片上的纵坐标差(y1-y2)习惯上也称之为上下视差,用符号q表示。模型的绝对定向在摄影测量中,相对定向所建立的立体模型常处在暂时的或过渡性的模型坐标系中,而且比例尺也是任意的,因此必须把它变换至地面测量坐标系中,并使符合规定的比例尺,方可测图,这个变换过程称为绝对定向。绝对定向的数学基础是三维线性相似变换,它的元素有7个:3个坐标原点的平移值,3个立体模型的转角值和1个比例尺缩放率。立体观测原理立体观察的原理是建立人造立体视觉,即将像对上的视差反映为人眼的生理视差后得出的立体视觉(图3)。得到人造立体视觉须具备3个条件:①由两个不同位置(一条基线的两端)拍摄同一景物的两张像片(称为立体像对或像对);②两只眼睛分别观察像对中的一张像片;③观察时像对上各同名像点的连线要同人的眼睛基线大致平行,而且同名点间的距离一般要小于眼基线(或扩大后的眼基距)。若用两个相同标志分别置于左右像片的同名像点上,则立体观察时就可以看到在立体模型上加入了一个空间的测标。为便于立体观察,可借助于一些简单的工具,如桥式立体镜和反光立体镜。对于那种利用两个投影器把左右像片的影像同时叠合地投影在一个承影面上的情况,可采用互补色原理或偏振光原理进行立体观察,并用一个具有测标的测绘台量测。作业航空摄影测量需要进行外业和内业两方面的工作。航测外业工作包括:①像片控制点联测。像片控制点一般是航摄前在地面上布设的标志点,也可选用像片上的明显地物点(如道路交叉点等),用普通测量方法测定其平面坐标和高程。②像片调绘。是图像判读、调查和绘注等工作的总称。在像片上通过判读,用规定的地形图符号绘注地物、地貌等要素;测绘没有影像的和新增的重要地物;注记通过调查所得的地名等。通过像片调绘所得到的像片称为调绘片。调绘工作可分为室内的、野外的和两者相结合的3种方法。③综合法测图。主要是在单张像片或像片图上用平板仪测绘等高线。航测内业工作包括:①测图控制点的加密。以前对于平坦地区一般采用辐射三角测量法,对于丘陵地和山地则采用立体测图仪建立单航线模拟的空中三角网,进行控制点的加密工作。20世纪60年代以来,模拟法空中三角测量逐渐地被解析空中三角测量代替(见空中三角测量)。②用各种光学机械仪器测制地形原图。测图方法20世纪30年代以来,航空摄影测量的测图方法主要有3种,即综合法、全能法和分工法(或称微分法)。航空摄影测量的综合法是摄影测量和平板仪测量相结合的测图方法。地形图上地物、地貌的平面位置由像片纠正的方法得出像片图或线划图,地形点高程和等高线则用普通测量方法在野外测定。它适用于平坦地区的大比例尺测图。航空摄影测量的全能法是根据摄影过程的几何反转原理,置立体像对于立体测图仪内,建立起所摄地面缩小的几何模型,借以测绘地形图的方法(图4)。在立体测图仪上安置像片时依据内方位元素,目的是使恢复后的投影光束同摄影光束相似(也可在一定条件下变换投影光束)。由于像对的相对定向过程中并未加入控制点,只利用了像对内在的几何特性,所以建立的几何模型的方位是任意的,模型的比例尺也是近似值,因此必须通过绝对定向才能据以测图。全能法测图的仪器是立体测图仪。这类仪器形式繁多,根据投影系统的结构可分为3种类型:①建立实际投影光线束的光学投影式的;②从投影中心至像点一方为实际的投影光线,而从投影中心至模型点一方则用方向导杆代替的光学机械投影式的;③用一根贯穿3个万向关节(它们分别代表像点、投影中心和模型点)的方向导杆来代替投影光线的机械投影式的。前两种型式的仪器现已基本淘汰了。立体测图仪的结构均须有投影系统、观测(观察和量测)系统和绘图系统等几个主要部分。使用立体测图仪进行相对定向和绝对定向,是通过两个投影器的角运动(少数仪器也有直线移动)和测标架上测标的安置动作来实现的。定向之后,可以通过立体观测,利用仪器上的测标点在地面的立体模型上进行地物和地貌的测绘。有的仪器还可以处理地面摄影的像片,有的可在仪器上作空中三角测量。立体测图仪自1930年问世以来,发展到60年代达到高峰,以后主要是发展仪器外围设备,例如电子绘图桌、正射投影装置(见正射影像技术)以及坐标记录装置等。电子绘图桌有多种功能,可以自动地做某些内容的绘图工作。航空摄影测量的分工法(微分法)是按照平面和高程分求的原则进行测图的一种方法。使用的主要仪器是立体量测仪。它是根据竖直摄影像对,量测左右视差较和在右方像片上勾绘等高线的一种仪器。一个地面点在左、右两张像片上构像点的横坐标x的差值称左右视差p,而两个地面点的左右视差之差则称之为左右视差较△P,这个△P是该两点的高程差所引起的。在量测左右视差较△P的过程中,借助仪器上的改正机件,自动改正由摄影外方位元素带来的影响,使之等于理想像对的左右视差或左右视差较;而用高差公式计算高程差;然后用投影转绘仪把在像片上勾绘的等高线以及调绘的地物,进行分带投影转绘成地形图。中国设计制造的X-2型视差测图仪是在立体量测仪的基础上,另加平面改正机件,改进后的仪器,在使用中可把分工法测图中的两个步骤一次解决,从而提高了作业效率。意大利、联邦德国也有类似的仪器。航空摄影测量的成图方法和仪器正在向着半自动化和自动化方向发展,在这方面解析测图仪已经有了相当的成就。(见彩图)空中三角测量-正文航空摄影测量中利用像片内在的几何特性,在室内加密控制点的方法。即利用连续摄取的具有一定重叠的航摄像片,依据少量野外控制点,以摄影测量方法建立同实地相应的航线模型或区域网模型(光学的或数字的),从而获取加密点的平面坐标和高程。主要用于测地形图工作简史空中三角测量分为利用光学机械实现的模拟法和利用电子计算机实现的解析法两类。模拟法产生于20世纪30年代初期(见Ovon格鲁贝尔)。由于这种方法是在室内作业,节省了大量的野外控制测量工作,所以很快得到应用和推广。当时虽然也提出过有关解析法的基本理论,但由于计算工具和计算方法不够完善,所以只限于理论研究。直到40年代末,随着电子计算机应用范围的不断扩大,解析法才得到发展,并逐渐取代了模拟法。60年代以来,解析法摆脱了模拟法的传统概念,解算方法除仿照模拟法的航带法外,还有独立模型法和光线束法等典型方法。空中三角测量的范围也由单条航线扩展到几条航线连接的区域,形成区域网空中三角测量。它在运算中不仅可以处理偶然误差,而且也可以处理系统误差,有的程序还包括有自动剔除部分粗差的功能,有的还可进行摄影测量观测值和大地测量观测值及其他辅助数据的联合平差等。方法模拟法空中三角测量用光学机械的方法,在实现摄影过程的几何反转原理的基础上,借助立体测图仪进行空中三角测量。一般只限于在一条航线内进行。主要步骤是:把一条航线段的像片按顺序安置在测图仪的各投影器内,通过逐个像对的相对定向,建立单个立体模型。然后借助于相邻立体模型之间重叠部分的公共地物点和公共投影中心,把模型依次连接起来,构成航线网模型(见图)。最后把航线网模型作为一个整体进行绝对定向,使所建立的航线网模型同少量的外业控制点相符合。航线网模型中所有的点经绝对定向后,即可作为单个模型测图时的控制点。航线网模型的绝对定向要求至少有3个外业控制点。由于各种误差的存在会引起模型的变形,所以一般在工作中要求每条航线具备6个作业控制点,以便在绝对定向中用图解方法进行整体模型的变形改正。利用多倍投影测图仪进行空中三角测量时,像片须先经缩小;只有两个投影器的立体测图仪,如具有基线向内和向外安置,观察目镜系统左、右转换等功能,也可以用类似方法进行空中三角测量。解析法空中三角测量根据像片上的像点坐标(或单元立体模型上点的坐标)同地面点坐标的解析关系或每两条同名光线共面的解析关系,构成摄影测量网的空中三角测量。建立摄影测量网和平差计算等工作都由计算机来完成。建网的方法有多种,最常用的是航带法、独立模型法和光线束法。这3种方法既可以在一条航带上应用,称为单航带的解析空中三角测量,也可以将若干条航带连接成一个区域进行整体平差,称为区域网空中三角测量,或简称区域网平差。区域网平差不仅可以进一步减少野外实测控制点的工作量,而且有内部精度均匀的优点,所以应用最广。航带法区域网空中三角测量这种方法基本上模仿模拟法空中三角测量建立单航带的过程,也就是通过计算相对定向元素和模型点坐标建立单个模型,利用相邻模型间公共连接点进行模型连接运算,以建立比例尺统一的航带立体模型。这样由各单条航线独立地建立各自的航带模型。每个航带模型单元要各自概略置平并统一在一个共同的坐标系中,最后进行整体平差运算。为此要对各航带列出各自的非线性改正公式(使用二次或三次多项式或二次正形变换公式),按最小二乘法准则统一平差计算,求出各条航带的非线性改正参数。计算过程中既要考虑使相邻航带间同名连接点的地面坐标相等,控制点的内业坐标同外业实测坐标相等,又要使各模型点坐标(此时作为观测值看待)改正数的平方和为最小,从而最后获得全区域网加密点的地面坐标。独立模型法区域网空中三角测量首先由航带内各相邻的航摄像片构成单模型(或双模型或模型组)视为刚体单元,即在单元内不加任何改正的独立模型。各独立模型可以用解析法或用立体测图仪来建立。独立模型法区域网空中三角测量就是把这些独立模型的全部纳入到整体平差运算中。此时每个独立模型只作平移、旋转和缩放,把各个加密点和控制点的模型坐标作为观测值,使相邻独立模型的同名点的坐标相等,控制点的坐标同外业的实测坐标相等。在实践中常常把加密点的平面和高程分开解算,以减少计算机的存贮和计算工作量。光线束法区域网空中三角测量以投影中心点、像点和相应的地面点三点共线为条件,以单张像片为解算单元,借助像片之间的公共点和野外控制点,把各张像片的光束连成一个区域进行整体平差,解算出加密点坐标的方法。其基本理论公式为中心投影的共线条件方程式(见解析摄影测量九由每个像点的坐标观测值可以列出两个相应的误差方程式,按最小二乘准则平差,求出每张像片外方位元素的6个待定参数,即摄影站点的3个空间坐标和光线束旋转矩阵中3个独立的定向参数,从而得出各加密点的坐标。以上3种方法中,光线束法理论公式是用实际观测的像点坐标为观测值列出误差方程式,所以平差的理论是严密的,加密的精度也应该最高。但在实施中应清除航摄资料本身存在的系统误差,否则光线束法的优越性就得不到发挥。航带法在理论上最不严密,但它在运算中有消除部分系统误差的功能,而且运算简单,对计算机内存容量的要求不高。同模拟法比较,解析法精度高,速度快,没有模拟法的种种限制,而且对航摄机物镜畸变、摄影材料的变形、大气折光等物理因素所引起的像点误差,以及地球曲率的影响等都可以用计算的方法逐点加以改正,提高加密精度,从而可大量减少外业控制点的测量工作。解析空中三角测量方法不仅可用于测绘地形图的控制点内业加密,而且还可用于国民经济的其他方面,如铁路、公路的选线,高压输电线路的设计等。仪器包括量测和转刺像点的两类仪器。量测仪器量测像点坐标的仪器主要有:立体坐标量测仪、精密立体坐标量测仪和单像坐标量测仪等。立体坐标量测仪和精密立体坐标量测仪均同时量测像对的两张像片,它们的结构采用X和F两个严格垂直的精密导轨为主导轨,两个像盘可沿x主导轨作共同移动,两个观测物镜可沿r主导轨作共同移动。在主导轨上安有单独的x和y向短导轨,可使右像盘对左像盘做x向的相对移动,右观测物镜相对于左观测物镜做y向相对移动。立体坐标量测仪和精密立体坐标量测仪可直接量测左像点的坐标x1和y1,左右视差p和上下视差q。左右视差p=x1-x2是同名像点在左、右像片上的x坐标差,上下视差q=y1-y2是其y坐标差。有的立体坐标量测仪对左右两像盘都有各自的x、y导轨,因而可同时量得左、右像片上某同名点的坐标值x1、y1和x2、y2。精密立体坐标量测仪除了量测坐标的精度从±5微米提高到±1〜±3微米的等级以外,由于采用增量脉冲计数方法,故一般都备有可以显示、打印、纸带穿孔或磁带记录等功能的自动坐标记录装置。单像坐标量测仪只有一个像盘以及x和y导轨。配用不同的物镜和目镜,可用多种放大率进行观测。它的精度可达到土0.4微米。这类仪器也都附有自动坐标记录装置。为了提高仪器的量测精度,许多坐标量测仪在设计中使用了阿贝原理,亦即所量测的线段同量测的器具置于同一直线上的比长原理。

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论