




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.某中学规定学生的学期体育成绩满分为100,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%.小明的三项成绩(百分制)依次是90,80,94,小明这学期的体育成绩是()A.88 B.89 C.90 D.912.下列各组数为勾股数的是()A.1,1, B.4,5,6 C.8,9,10 D.5,12,133.如图是我市某一天内的气温变化图,根据图象,下列说法中错误的是()A.这一天中最高气温是26℃B.这一天中最高气温与最低气温的差为16℃C.这一天中2时至14时之间的气温在逐渐升高D.这一天中14时至24时之间的气温在逐渐降低4.如图,AB=AC,则数轴上点C所表示的数为()A.﹣1 B. C.﹣2 D.+25.如果三条线段的长a,b,c满足a2=c2-b2,则这三条线段组成的三角形是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.无法确定6.一个平行四边形的两条对角线的长分别为8和10,则这个平行四边形边长不可能是()A.2B.5C.8D.107.如图,在中,已知,分别为边,的中点,连结,若,则等于()A.70º B.67.5º C.65º D.60º8.下列各组数中,不是直角三角形的三条边的长的是()A.3,4,5 B.6,8,10 C.5,12,13 D.4,5,69.已知正比例函数y=kx的图象经过第一、三象限,则一次函数y=kx﹣k的图象可能是下图中的()A. B. C. D.10.若,则的值用、可以表示为()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,将矩形纸片ABCD分别沿AE、CF折叠,若B、D两点恰好都落在对角线的交点O上,下列说法:①四边形AECF为菱形,②∠AEC=120°,③若AB=2,则四边形AECF的面积为,④AB:BC=1:2,其中正确的说法有_____.(只填写序号)12.已知双曲线经过点(-1,2),那么k的值等于_______.13.一次函数图象经过一、三、四象限,则反比例函数的函数值随的增大而__________.(填增大或减小)14.万州区某中学为丰富学生的课余生活,开展了手工制作比赛,如图是该校八年级进入了校决赛的15名学生制作手工作品所需时间(单位:分钟)的统计图,则这15名学生制作手工作品所需时间的中位数是______.15.若与最简二次根式是同类二次根式,则__________.16.计算:若,求的值是.17.如图,小明用三个等腰三角形(图中①②③)拼成了一个平行四边形ABCD,且,则=________度18.对于实数a,b,定义运算“﹡”:.例如4﹡2,因为4>2,所以4﹡2=42﹣4×2=1.若x1,x2是一元二次方程x2﹣5x+6=0的两个根,则x1﹡x2=.三、解答题(共66分)19.(10分)如图,在△ABC中,∠C=90°,∠A=30°,边AB的垂直平分线交AB于点D,交AC于点E.求证:AE=2CE.20.(6分)阅读可以增进人们的知识也能陶治人们的情操。我们要多阅读,多阅读有营养的书。因此我校对学生的课外阅读时间进行了抽样调查,将收集的数据分成A、B、C、D、E五组进行整理,整理后的数据如下表(表中信息不完整)。图1和图2是根据整理后的数据绘制的两幅不完整的统计图.阅读时间分组统计表组别阅读时间x(h)人数AaB100CbD140Ec请结合以上信息解答下列问题(1)求a,b,c的值;(2)补全图1所对应的统计图;(3)估计全校课外阅读时间在20h以下(不含20h)的学生所占百分比.21.(6分)如图,已知∠ABC=90°,D是直线AB上的点,AD=BC.(1)如图1,过点A作AF⊥AB,截取AF=BD,连接DC、DF、CF,判断△CDF的形状并证明;(2)如图2,E是直线BC上一点,且CE=BD,直线AE、CD相交于点P,∠APD的度数是一个固定的值吗?若是,请求出它的度数;若不是,请说明理由.22.(8分)如图,在中,,点、分别在边、上,且,,点在边上,且,联结.(1)求证:四边形是菱形;(2)如果,,求四边形的面积.23.(8分)在平行四边形ABCD中,点O是对角线BD中点,点E在边BC上,EO的延长线与边AD交于点F,连接BF、DE,如图1.(1)求证:四边形BEDF是平行四边形;(2)在(1)中,若DE=DC,∠CBD=45°,过点C作DE的垂线,与DE、BD、BF分别交于点G、H、R,如图2.①当CD=6,CE=4时,求BE的长.②探究BH与AF的数量关系,并给予证明.24.(8分)如图,△ABC中,A(-1,1),B(-4,2),C(-3,4).(1)在网格中画出△ABC向右平移5个单位后的图形△A1B1C1;(2)在网格中画出△ABC关于原点O成中心对称后的图形△A2B2C2;(3)请直接写出点B2、C2的坐标.25.(10分)如图,是等边三角形,是中线,延长至,.(1)求证:;(2)请在图中过点作交于,若,求的周长.26.(10分)如图,矩形ABCD中,,,E、F分别是AB、CD的中点求证:四边形AECF是平行四边形;是否存在a的值使得四边形AECF为菱形,若存在求出a的值,若不存在说明理由;如图,点P是线段AF上一动点且求证:;直接写出a的取值范围.
参考答案一、选择题(每小题3分,共30分)1、B【解析】
根据加权平均数的计算公式列出算式,再进行计算即可.【详解】根据题意得:90×20%+80×30%+94×50%=89(分).答:小明这学期的体育成绩是89分.故选:B.【点睛】考查了加权平均数,掌握加权平均数的计算公式是本题的关键,是一道常考题.2、D【解析】分析:根据勾股数组的定义:满足a2+b2=c2的三个正整数叫做勾股数,逐项分析即可.详解:A.∵不是正整数,故1,1,不是勾股数;B.∵42+52≠62,故4,5,6不是勾股数;C.∵82+92≠102,故8,9,10不是勾股数;D.∵52+122=132,故5,12,13是勾股数;故选D.点睛:本题考查了勾股数的识别,解答本题的关键是熟练掌握勾股数的定义.3、A【解析】
根据函数图象的纵坐标,可得气温,根据函数图象的增减性,可得答案.【详解】A、由纵坐标看出,这一天中最高气温是24℃,错误,故A符合选项;B、由纵坐标看出最高气温是24℃,最低气温是8℃,温差是24﹣8=16℃,正确,故B不符合选项;C、由函数图象看出,这一天中2时至14时之间的气温在逐渐升高,故C正确;D、由函数图象看出,这一天中0时至2时,14时至24时气温在逐渐降低,故D错误;故选:A.【点睛】考查了函数图象,由纵坐标看出气温,横坐标看出时间是解题关键.4、B【解析】
可利用勾股定理求出AB的值,即可得到答案.【详解】解:由勾股定理可知:AB==,即AC=AB=,A为数轴上的原点,数轴上点C表示的数为,故选:B.【点睛】本题考查实数与数轴,利用勾股定理求出AB的值为解决本题的关键.5、B【解析】
根据“勾股定理的逆定理”结合已知条件分析判断即可.【详解】解:∵三条线段的长a,b,c满足a2=c2-b2,∴a2+b2=c2,∴这三条线段组成的三角形是直角三角形故选B.【点睛】本题考查熟知“若三角形的三边长分别为a、b、c,且满足a2+b2=c2,则该三角形是以c为斜边的直角三角形”是解答本题的关键.6、D【解析】试题分析:根据平行四边形的对角线互相平分和三角形三边关系可求得平行四边形边长的取值范围,可求得答案.解:如图,在平行四边形ABCD中,对角线AC=8,BD=1,且交于点O,则AO=AC=4,BO=DO=BD=5,∴5﹣4<AB<5+4,5﹣4<AD<5+4,即1<AB<9,1<AD<9,故平行四边形的边长不可能为1.故选D.【点评】本题主要考查平行四边形的性质和三角形三边关系,由三角形三边关系求得平行四边形边长的取值范围是解题的关键.7、A【解析】
由题意可知DE是三角形的中位线,所以DE∥BC,由平行线的性质即可求出的度数.【详解】∵D,E分别为AB,AC的中点,∴DE是三角形的中位线,∴DE∥BC,∴∠AED=∠C=70°,故选A【点睛】此题考查平行线的性质,三角形中位线定理,难度不大8、D【解析】
根据勾股定理即可判断.【详解】A.∵32+42=52,故为直角三角形;B.62+82=102,故为直角三角形;C.52+122=132,故为直角三角形;D.42+52≠62,故不是直角三角形;故选D.【点睛】此题主要考查勾股定理的应用,解题的关键是熟知勾股定理的性质.9、D【解析】
根据正比例函数的图象经过第一,三象限可得:,因此在一次函数中,,根据直线倾斜方向向右上方,直线与y轴的交点在y轴负半轴,画出图象即可求解.【详解】根据正比例函数的图象经过第一,三象限可得:所以,所以一次函数中,,所以一次函数图象经过一,三,四象限,故选D.【点睛】本题主要考查一次函数图象象限分布性质,解决本题的关键是要熟练掌握一次函数图象图象的象限分布性质.10、C【解析】
根据化简即可.【详解】=.故选C.【点睛】此题的关键是把写成的形式.二、填空题(每小题3分,共24分)11、①②③【解析】
根据折叠性质可得OC=CD=AB=OA,∠COF=∠EOA=∠B=∠D=90°,∠OCF=∠DCF,∠BAE=∠OAE,即可得出∠ACB=30°,进而可得∠OCF=∠DCF=∠BAE=∠OAE=30°,可证明AE//CF,AE=CE,根据矩形性质可得CE//AF,即可得四边形AECF是平行四边形,进而可得四边形AECF为菱形,由∠BAE=30°,可得∠AEB=60°,即可得∠AEC=120°,根据含30°角的直角三角形的性质可求出BE的长,即可得OE的长,根据菱形的面积公式即可求出四边形AECF的面积,根据含30°角的直角三角形的性质即可求出AB:BC的值,综上即可得答案.【详解】∵矩形ABCD分别沿AE、CF折叠,B、D两点恰好都落在对角线的交点O上,∴OC=CD=AB=OA,∠COF=∠EOA=∠B=∠D=90°,∠OCF=∠DCF,∠BAE=∠OAE,∴∠ACB=∠CAD=30°,∠BAC=∠ACD=60°,∵∠OCF=∠DCF,∠BAE=∠OAE,∴∠OCF=∠DCF=∠BAE=∠OAE=30°,∴AE//CF,AE=CE,∴四边形AECF是平行四边形,∵AE=CE,∴四边形AECF是菱形,故①正确,∵∠BAE=30°,∠B=90°,∴∠AEB=60°,∴∠AEC=120°,故②正确,设BE=x,∵∠BAE=30°,∴AE=2x,∴x2+22=(2x)2,解得:x=,∴OE=BE=,∴S菱形AECF=EFAC=××4=,故③正确,∵∠ACB=30°,∴AC=2AB,∴BC==AB,∴AB:BC=1:,故④错误,综上所述:正确的结论有①②③,故答案为:①②③【点睛】本题考查矩形的性质、菱形的判定与性质及含30°角的直角三角形的性质,熟练掌握相关性质及判定方法是解题关键.12、-1【解析】
分析:根据点在曲线上点的坐标满足方程的关系,将点(-1,2)代入,得:,解得:k=-1.13、增大【解析】
根据一次函数图象经过一、三、四象限,可以得出>0,b<0,则反比例函数的系数,结合x>0即可得到结论.【详解】∵一次函数图象经过一、三、四象限,∴>0,b<0,∴,∴又x>0,∴反比例函数图象在第四象限,且y随着x的增大而增大,故答案为:增大.【点睛】本题考查了一次函数的图象和性质,反比例函数的图象和性质,掌握一次函数,反比例函数的图象和性质是解题的关键.14、14【解析】
根据中位数的意义,排序找中间位置的数或中间两个数的平均数即可.【详解】15名学生制作手工作品所需时间中排在第8位的是14分钟,因此中位数是14分钟故答案为14.【点睛】本题考查中位数的概念和求法,将数据从小到大排序找中间位置的数或中间两个数的平均数,理解意义掌握方法是关键.15、3【解析】
先化简,然后根据同类二次根式的概念进行求解即可.【详解】=2,又与最简二次根式是同类二次根式,所以a=3,故答案为3.【点睛】本题考查了最简二次根式与同类二次根式,熟练掌握相关概念以及求解方法是解题的关键.16、﹣.【解析】试题分析:∵-=3,∴y-x=3xy,∴====.故答案为:.点睛:本题考查了分式的化简求值,把已知进行变形得出y-x=3xy,并进行整体代入是解决此题的关键.17、72或【解析】分析:分两种情况讨论,分别构建方程即可解决问题.详解:由题意可知:AD=DE,∴∠DAE=∠DEA,设∠DAE=∠DEA=x.∵四边形ABCD是平行四边形,∴CD∥AB,∠C=∠DAB,∴∠DEA=∠EAB=x,∴∠C=∠DAB=2x.①AE=AB时,若BE=BC,则有∠BEC=∠C,即(180°﹣x)=2x,解得:x=36°,∴∠C=72°;若EC=EB时,则有∠EBC=∠C=2x.∵∠DAB+∠ABC=180°,∴4x+(180°﹣x)=180°,解得:x=,∴∠C=,②EA=EB时,同法可得∠C=72°.综上所述:∠C=72°或.故答案为72°或.点睛:本题考查了平行四边形的性质、等腰三角形的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.18、3或﹣3【解析】试题分析:∵x1,x2是一元二次方程x2﹣5x+6=0的两个根,∴(x﹣3)(x﹣2)=0,解得:x=3或2.①当x1=3,x2=2时,x1﹡x2=32﹣3×2=3;②当x1=2,x2=3时,x1﹡x2=3×2﹣32=﹣3.三、解答题(共66分)19、见解析【解析】
由DE为垂直平分线可以知道,AE=BE,只要得到BE=2CE,即可,利用∠A=30°和∠C=90°,即可得到所求【详解】解:连接BE,∵在△ABC中,∠C=90°,∠A=30°,∴∠ABC=90°﹣∠A=60°,∵DE是AB的垂直平分线,∴AE=BE,∴∠ABE=∠A=30°,∴∠CBE=∠ABC﹣∠ABE=30°,在Rt△BCE中,∵∠CBE=30°∴BE=2CE,∴AE=2CE.【点睛】本题主要考查垂直平分线的用法,掌握垂直平分线的性质是关键20、(1)a=20,b=200,c=40;(2)详见解析;(3)估计全校课外阅读时间在20h以下的学生所占百分比为24%.【解析】
(1)根据D组的人数及占比可求出调查的总人数,再根据C,E组的占比求出对应的人数,再用总人数减去各组人数即可求出.(2)根据所求的数值即可补全统计图;(3)根据题意可知在20h以下(不含20h)的学生所占百分比为,故可求解.【详解】解:(1)由题意可知,调查的总人数为,∴,,则;(2)补全图形如下:(3)由(1)可知,答:估计全校课外阅读时间在20h以下的学生所占百分比为24%.【点睛】此题主要考查统计调查的应用,解题的关键是根据题意求出调查的总人数.21、(1)△CDF是等腰三角形;(2)∠APD=45°.【解析】
(1)利用SAS证明△AFD和△BDC全等,再利用全等三角形的性质得出FD=DC,即可判断三角形的形状;(2)作AF⊥AB于A,使AF=BD,连结DF,CF,利用SAS证明△AFD和△BDC全等,再利用全等三角形的性质得出FD=DC,∠FDC=90°,即可得出∠FCD=∠APD=45°.【详解】(1)△CDF是等腰直角三角形,理由如下:∵AF⊥AD,∠ABC=90°,∴∠FAD=∠DBC,在△FAD与△DBC中,,∴△FAD≌△DBC(SAS),∴FD=DC,∴△CDF是等腰三角形,∵△FAD≌△DBC,∴∠FDA=∠DCB,∵∠BDC+∠DCB=90°,∴∠BDC+∠FDA=90°,∴△CDF是等腰直角三角形;(2)作AF⊥AB于A,使AF=BD,连结DF,CF,如图,∵AF⊥AD,∠ABC=90°,∴∠FAD=∠DBC,在△FAD与△DBC中,,∴△FAD≌△DBC(SAS),∴FD=DC,∴△CDF是等腰三角形,∵△FAD≌△DBC,∴∠FDA=∠DCB,∵∠BDC+∠DCB=90°,∴∠BDC+∠FDA=90°,∴△CDF是等腰直角三角形,∴∠FCD=45°,∵AF∥CE,且AF=CE,∴四边形AFCE是平行四边形,∴AE∥CF,∴∠APD=∠FCD=45°.22、(1)证明见解析;(2)1.【解析】
(1)由平行线的性质及等腰三角形的性质得出,进而有,通过等量代换可得出,然后利用一组对边平行且相等即可证明四边形是平行四边形,然后再利用即可证明四边形是菱形;(2)过点作交于点,在含30°的直角三角形中求出FG的长度,然后利用即可求出面积.【详解】(1),.,,,,.,.,,又,.又,四边形是平行四边形.又,四边形是菱形.(2)过点作交于点.四边形是菱形,且,.,.又,.在中,,,..【点睛】本题主要考查平行线的性质,等腰三角形的判定,菱形的判定及性质,掌握平行线的性质,等腰三角形的性质,含30°的直角三角形的性质,菱形的判定及性质是解题的关键.23、(1)详见解析;(2)①4﹣2;②AF=BH,详见解析【解析】
(1)由“ASA”可得△BOE≌△DOF,可得DF=BE,可得结论;(2)①由等腰三角形的性质可得EN=CN=2,由勾股定理可求DN,由等腰三角形的性质可求BN的长,即可求解;②如图,过点H作HM⊥BC于点M,由“AAS”可证△HMC≌△CND,可得HM=CN,由等腰直角三角形的性质可得BH=HM,即可得结论.【详解】(1)证明:∵平行四边形ABCD中,点O是对角线BD中点,∴AD∥BC,BO=DO,∴∠ADB=∠CBD,且∠DOF=∠BOE,BO=DO,∴△BOE≌△DOF(ASA)∴DF=BE,且DF∥BE,∴四边形BEDF是平行四边形;(2)①如图2,过点D作DN⊥EC于点N,∵DE=DC=6,DN⊥EC,∴EN=CN=2,∴DN===4,∵∠DBC=45°,DN⊥BC,∴∠DBC=∠BDN=45°,∴DN=BN=4,∴BE=BN﹣EN=4﹣2;故答案为:BE=4﹣2.②AF=BH,理由如下:如图,过点H作HM⊥BC于点M,∵DN⊥EC,CG⊥DE,∴∠CEG+∠ECG=90°,∠DEN+∠EDN=90°,∴∠EDN=∠ECG,∵DE=DC,DN⊥EC,∴∠EDN=∠CDN,EC=2CN,∴∠ECG=∠CDN,∵∠DHC=∠DBC+∠BCH=45°+∠BCH,∠CDB=∠BDN+∠CDN=45°+∠CDN,∴∠CDB=∠DHC,∴CD=CH,且∠HMC=∠DNC=90°,∠ECG=∠CDN,∴△HMC≌△CND(AAS)∴HM=CN,∵HM⊥BC,∠DBC=45°,∴∠BHM=∠DBC=45°,∴BM=HM,∴BH=HM,∵AD=BC,DF=BE,∴AF=EC=2CN,∴AF=2HM=BH.故答案为:AF=BH.【点睛】本题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025福建厦门外图集团有限公司17个岗位招聘若干人笔试历年参考题库附带答案详解
- 2025浙江绍兴兰亭国有控股集团有限公司招聘(派遣制岗位)笔试以及人员笔试历年参考题库附带答案详解
- 2025年济宁市任城区事业单位公开招聘工作人员(教育类)(125人)模拟试卷及一套完整答案详解
- 2025广东广州花都产融建设发展投资有限公司第二次招聘项目用工人员及安排笔试历年参考题库附带答案详解
- 2025广西玉林北流市山围镇卫生院公开招聘5人考前自测高频考点模拟试题及1套参考答案详解
- 2025江苏南京交通职业技术学院招聘高层次人才14人考前自测高频考点模拟试题及1套完整答案详解
- 2025湖南长沙市生态环境局芙蓉分局招聘编外合同制工作人员考前自测高频考点模拟试题有答案详解
- 2025黑龙江哈尔滨市五常市万宝学校9大岗位招聘28人模拟试卷及答案详解(网校专用)
- 2025广东深圳市宝安区陶园中英文实验学校招聘精英教师16人考前自测高频考点模拟试题及一套答案详解
- 2025年度哈尔滨“丁香人才周”(春季)事业单位引才招聘1347人考前自测高频考点模拟试题有完整答案详解
- 第一单元《精神信仰力量情感》《大路歌》教学设计湘艺版初中音乐八年级上册
- 进位制完整版本
- DB32/T+4860-2024+电镀园区环境管理技术规范
- 室内安装标识标牌施工方案
- GB/T 17775-2024旅游景区质量等级划分
- 小学数学情境教学设计案例分析
- 《福建省整体装配式卫浴间标准设计图集》
- 中药冷敷技术操作方法及常见疾病的中药冷敷技术
- 地方政府的组织结构课件
- 【公开课教案】《蹲踞式起跑》教案
- 病毒性脑炎临床路径(2016年版)
评论
0/150
提交评论