2023届安徽省明光市明光镇映山中学八年级数学第二学期期末联考模拟试题含解析_第1页
2023届安徽省明光市明光镇映山中学八年级数学第二学期期末联考模拟试题含解析_第2页
2023届安徽省明光市明光镇映山中学八年级数学第二学期期末联考模拟试题含解析_第3页
2023届安徽省明光市明光镇映山中学八年级数学第二学期期末联考模拟试题含解析_第4页
2023届安徽省明光市明光镇映山中学八年级数学第二学期期末联考模拟试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.菱形的对角线,,则该菱形的面积为()A.12.5 B.50 C. D.252.将一副直角三角板如图放置,点C在FD的延长上,AB∥CF,∠F=∠ACB=90°,∠E=30°,∠A=45°,AC=12,则CD的长为()A.4 B.12﹣4 C.12﹣6 D.63.两组数据:98,99,99,100和98.5,99,99,99.5,则关于以下统计量说法不正确的是()A.平均数相等B.中位数相等C.众数相等D.方差相等4.下列计算错误的是()A.+= B.×= C.÷=3 D.(2)2=85.反比例函数y=kx的图象经过点M(﹣3,2A.(3,2) B.(2,3) C.(1,6) D.(3,﹣2)6.关于的方程有两实数根,则实数的取值范围是()A. B. C. D.7.若=﹣a,则a的取值范围是()A.﹣3≤a≤0 B.a≤0 C.a<0 D.a≥﹣38.若二次函数的图象经过点P(-2,4),则该图象必经过点()A.(2,4) B.(-2,-4) C.(-4,2) D.(4,-2)9.如图,平行四边形ABCD中,EF∥BC,GH∥AB,EF,GH相交于点O,则图中有平行四边形()A.4个 B.5个 C.8个 D.9个10.如图圆柱的底面周长是,圆柱的高为,为圆柱上底面的直径,一只蚂蚁如果沿着圆柱的侧面从下底面点处爬到上底面点处,那么它爬行的最短路程为()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,点O(0,0),A(0,1)是正方形OAA1B的两个顶点,以对角线OA1为边作正方形OA1A2B1,再以正方形的对角线OA2作正方形OA2A3B3,…,依此规律,则点A10的坐标是_____.12.一组数据2,3,4,5,3的众数为__________.13.已知一组数据:10,8,6,10,8,13,11,10,12,7,10,11,10,9,12,10,9,12,9,8,把这组数据按照6~7,8~9,10~11,12~13分组,那么频率为0.4的一组是_________.14.如图,已知两点A(6,3),B(6,0),以原点O为位似中心,相似比为1:3把线段AB缩小,则点A的对应点坐标是_________(2,1)或(-2,-1)15.若平行四边形中相邻两个内角的度数比为1:3,则其中较小的内角是__________度.16.函数中,自变量的取值范围是___.17.用科学记数法表示:__________________.18.如图,在平行四边形ABCD中,AB=,AD=4,将平行四边形ABCD沿AE翻折后,点B恰好与点C重合,则折痕AE的长为________.三、解答题(共66分)19.(10分)如图,在Rt△ABC中,∠B=90°,∠C=30°,AC=48,点D从点C出发沿CA方向以每秒4个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒2个单位长的速度向点B匀速运动,当其中一个点到达终点,另一个点也随之停止运动,设点D、E运动的时间是t秒(t>0),过点D作DF⊥BC于点F,连接DE、EF.(1)求证:AE=DF;(2)当四边形BFDE是矩形时,求t的值;(3)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.×20.(6分)甲、乙两人参加射箭比赛,两人各射了5箭,他们的成绩(单位:环)统计如下表.第1箭第2箭第3箭第4箭第5箭甲成绩94746乙成绩75657(1)分别计算甲、乙两人射箭比赛的平均成绩;(2)你认为哪个人的射箭成绩比较稳定?为什么?21.(6分)已知关于x的一元二次方程总有两个不相等的实数根.(1)求m的取值范围;(2)若此方程的两根均为正整数,求正整数m的值.22.(8分)如图,△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0)、C(﹣1,0).(1)画出把△ABC向下平移4个单位后的图形.(2)画出将△ABC绕原点O按顺时针方向旋转90°后的图形.(3)写出符合条件的以A、B、C、D为顶点的平行四边形的第四个顶点D的坐标.23.(8分)近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次一共调查了多少名购买者?(2)请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为度.(3)若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?24.(8分)如图,四边形ABCD是正方形,点G是BC上一点,DE⊥AG于点E,BF∥DE且交AG于点F.(1)求证:AE=BF;(2)当∠BAG=30°,且AB=2时,求EF-FG的值.25.(10分)如图,在平面直角坐标系中,已知一次函数的图象与过、的直线交于点P,与x轴、y轴分别相交于点C和点D.求直线AB的解析式及点P的坐标;连接AC,求的面积;设点E在x轴上,且与C、D构成等腰三角形,请直接写出点E的坐标.26.(10分)在平面直角坐标系中,一次函数的图象与轴负半轴交于点,与轴正半轴交于点,点为直线上一点,,点为轴正半轴上一点,连接,的面积为1.(1)如图1,求点的坐标;(2)如图2,点分别在线段上,连接,点的横坐标为,点的横坐标为,求与的函数关系式(不要求写出自变量的取值范围);(3)在(2)的条件下,如图3,连接,点为轴正半轴上点右侧一点,点为第一象限内一点,,,延长交于点,点为上一点,直线经过点和点,过点作,交直线于点,连接,请你判断四边形的形状,并说明理由.

参考答案一、选择题(每小题3分,共30分)1、D【解析】

根据菱形的面积公式求解即可.【详解】菱形的面积=AC·BD=×5×10=25故选:D【点睛】本题考查菱形的面积公式,菱形的面积等于对角线乘积的一半,学生们熟练掌握即可.2、B【解析】

过点B作BM⊥FD于点M,根据题意可求出BC的长度,然后在△EFD中可求出∠EDF=60°,进而可得出答案.【详解】解:过点B作BM⊥FD于点M,在△ACB中,∠ACB=90°,∠A=45°,AC=12,∴BC=AC=12.∵AB∥CF,∴BM=BC×sin45°=CM=BM=12,在△EFD中,∠F=90°,∠E=30°,∴∠EDF=60°,∴MD=BM÷tan60°=,∴CD=CM﹣MD=12﹣.故选B.【点睛】本题考查了解直角三角形,难度较大,解答此类题目的关键根据题意建立直角三角形利用所学的三角函数的关系进行解答.3、D【解析】

根据平均数的计算公式、众数和中位数的概念以及方差的计算公式计算,判断即可.【详解】14(98+99+99+100)=99,14(98.5+99+99+99.5)=99,平均数相等,两组数据:98,99,99,100和98.5,99,99,99.5的中位数都是99,众数是99,则中位数相等,众数相等,B、C不合题意;14[(98﹣99)2+(99﹣99)2+(99﹣99)2+[100﹣99)2]=12,14[(98.5﹣99)2+(99﹣99)2+(99﹣99)2+[99.5﹣99)故选D.【点睛】本题考查了平均数、众数、中位数和方差,掌握它们的概念以及计算公式是解题的关键.4、A【解析】

根据二次根式的运算法则逐一进行计算即可.【详解】,二次根式不能相加,故A计算错误,符合题意,,B计算正确,不符合题意,,C计算正确,不符合题意,,D计算正确,不符合题意,故选A.【点睛】本题考查二次根式的运算,熟知二次根式的运算法则是解题关键.5、D【解析】

根据题意得,k=xy=﹣3×2=﹣6,再将A,B,C,D四个选项中点的坐标代入得到k=﹣6的点在反比例函数的图象上.【详解】根据题意得,k=xy=﹣3×2=﹣6∴将A(3,2)代入得到k=6,故不在反比例函数的图象上;将B(2,3)代入得到k=6,故不在反比例函数的图象上;将C(1,6)代入得到k=6,故不在反比例函数的图象上;将D(3,-2)代入得到k=﹣6的点在反比例函数的图象上.故选D.【点睛】本题考查了反比例函数图象上点的坐标特征,关键是运用xy=k解决问题.6、A【解析】

根据方程有实数根列不等式即可求出答案.【详解】∵方程有两实数根,∴∆,即16-4a,∴,故选:A.【点睛】此题考查一元二次方程的判别式,根据一元二次方程的根的情况求出未知数的值,正确掌握根的三种情况是解题的关键.7、A【解析】

根据二次根式的性质列出不等式,解不等式即可解答.【详解】∵==﹣a,∴a≤0,a+3≥0,∴﹣3≤a≤0.故选A.【点睛】本题考查二次根式的性质,根据二次根式的性质列出不等式是解题的关键.8、A【解析】根据点在曲线上,点的坐标满足方程的关系,将P(-2,4)代入,得,∴二次函数解析式为.∴所给四点中,只有(2,4)满足.故选A.9、D【解析】

首先根据已知条件找出图中的平行线段,然后根据两组对边分别平行的四边形是平行四边形,来判断图中平行四边形的个数.【详解】∵四边形ABCD是平行四边形,∴AD∥BC,CD∥AB,又∵EF∥BC,GH∥AB,∴∴AB∥GH∥CD,AD∥EF∥BC,∴平行四边形有:□ABCD,□ABHG,□CDGH,□BCFE,□ADFE,□AGOE,□BEOH,□OFCH,□OGDF,共9个.即共有9个平行四边形.故选D.【点睛】本题考查平行四边形的判定与性质,解题的关键是根据已知条件找出图中的平行线段.10、C【解析】

把圆柱沿母线AC剪开后展开,点B展开后的对应点为B′,利用两点之间线段最短可判断蚂蚁爬行的最短路径为AB′,如图,由于AC=12,CB′=5,然后利用勾股定理计算出AB′即可.【详解】解:把圆柱沿母线AC剪开后展开,点B展开后的对应点为B′,则蚂蚁爬行的最短路径为AB′,如图,AC=12,CB′=5,

在Rt△ACB′,所以它爬行的最短路程为13cm.

故选:C.【点睛】本题考查了平面展开-最短路径问题,先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.二、填空题(每小题3分,共24分)11、(32,0)【解析】

根据题意和图形可看出每经过一次变化,都顺时针旋转45°,边长都乘以,所以可求出从A到A3的后变化的坐标,再求出A1、A2、A3、A4、A5,得出A10即可.【详解】根据题意和图形可看出每经过一次变化,都顺时针旋转45°,边长都乘以,∵从A到A3经过了3次变化,∵45°×3=135°,1×()3=2.∴点A3所在的正方形的边长为2,点A3位置在第四象限.∴点A3的坐标是(2,﹣2);可得出:A1点坐标为(1,1),A2点坐标为(2,0),A3点坐标为(2,﹣2),A4点坐标为(0,﹣4),A5点坐标为(﹣4,﹣4),A6(﹣8,0),A7(﹣8,8),A8(0,16),A9(16,16),A10(32,0).故答案为(32,0).【点睛】此题考查规律型:点的坐标,解题关键在于找到规律12、1.【解析】

众数又是指一组数据中出现次数最多的数据,本题根据众数的定义就可以求解.【详解】本题中数据1出现了2次,出现的次数最多,所以本题的众数是1.故答案为1.【点睛】众数是指一组数据中出现次数最多的数据.13、【解析】

首先数出数据的总数,然后数出各个小组内的数据个数,根据频率的计算公式,求出各段的频率,即可作出判断.【详解】解:共有10个数据,其中6~7的频率是1÷10=0.1;

8~9的频率是6÷10=0.3;

10~11的频率是8÷10=0.4;

11~13的频率是4÷10=0.1.

故答案为.【点睛】本题考查频数与频率,掌握频率的计算方法:频率=频数÷总数.14、(2,1)或(-2,-1)【解析】如图所示:∵A(6,3),B(6,0)两点,以坐标原点O为位似中心,相似比为,∴A′、A″的坐标分别是A′(2,1),A″((﹣2,﹣1).故答案为(2,1)或(﹣2,﹣1).15、45【解析】

由平行四边形的性质得出∠B+∠C=180°,由已知条件得出∠C=3∠B,得出∠B+3∠B=180°,得出∠B=45°即可.【详解】解:如图所示:

∵四边形ABCD是平行四边形,

∴AB∥CD,

∴∠B+∠C=180°,

∵∠B:∠C=1:3,

∴∠C=3∠B,

∴∠B+4∠B=180°,

解得:∠B=45°,

故答案为:45°.【点睛】本题考查了平行四边形的性质、平行线的性质;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.16、【解析】

根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.【详解】根据题意得:,解得:.故答案是:.【点睛】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.17、【解析】

绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】故答案为.【点睛】此题考查科学记数法,解题关键在于掌握一般形式.18、3.【解析】试题分析:点B恰好与点C重合,且四边形ABCD是平行四边形,根据翻折的性质,则AE⊥BC,BE=CE=3,在Rt△ABE中,由勾股定理得.故答案为3.考点:3.翻折变换(折叠问题);3.勾股定理;3.平行四边形的性质.三、解答题(共66分)19、(1)证明见解析;(2)1s;(2)8s.【解析】分析:(1)由∠DFC=90°,∠C=30°,证出DF=2t=AE;(2)当四边形BEDF是矩形时,△DEF为直角三角形且∠EDF=90°,求出t的值即可;(3)先证明四边形AEFD为平行四边形.得出AB=3,AD=AC-DC=48-4t,若△DEF为等边三角形,则四边形AEFD为菱形,得出AE=AD,2t=48-4t,求出t的值即可;详解:(1)在Rt△CDF中,∠C=30°,∴DF=CD,∴DF=•4t=2t,又∵AE=2t,∴AE=DF.(2)当四边形BFDE是矩形时,有BE=DF,∵Rt△ABC中,∠C=30°∴AB=AC=×48=24,∴BE=AB-AE=24-2t,∴24-2t=2t,∴t=1.(3)∵∠B=90°,DF⊥BC∴AE∥DF,∵AE=DF,∴四边形AEFD是平行四边形,由(1)知:四边形AEFD是平行四边形则当AE=AD时,四边形AEFD是菱形∴2t=48-4t,解得t=8,又∵t≤==12,∴t=8适合题意,故当t=8s时,四边形AEFD是菱形.点睛:本题是四边形综合题,主要考查了平行四边形、菱形、矩形的性质与判定以及锐角三角函数的知识,考查学生综合运用定理进行推理和计算的能力.20、(1)甲:6;乙:6;(2)乙更稳定【解析】

(1)根据平均数=总数÷总份数,只要把甲乙的总成绩求出来,分别除以5即可;据此解答;(2)根据求出的方差进行解答即可.【详解】(1)两人的平均成绩分别为,.(2)方差分别是S2甲=[(9-6)2+(4-6)2+(7-6)2+(4-6)2+(6-6)2]=3.6S2乙=[(7-6)2+(5-6)2+(6-6)2+(5-6)2+(7-6)2]=0.8∵S2甲>S2乙,∴乙更稳定,【点睛】本题主要考查平均数的求法和方差问题,然后根据平均数判断解答实际问题.21、(1)当m≠0和3时,原方程有两个不相等的实数根;(2)可取的正整数m的值分别为1.【解析】

(1)利用一元二次方程的定义和判别式的意义得到m≠0且△=[-(m+3)]2-4×m×3=(m-3)2>0,从而可得到m的范围;

(2)利用求根公式解方程得到x1=1,x2=,利用此方程的两根均为正整数得到m=1或m=3,然后利用(1)的范围可确定m的值.【详解】解:(1)由题意得:m≠0且>0,∴当m≠0和3时,原方程有两个不相等的实数根.(2)∵此方程的两根均为正整数,即,解方程得,.∴可取的正整数m的值分别为1.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.22、(1)见解析;(2)见解析;(3)D1(3,3)、D2(-7,3)、D3(-5,-3).【解析】

(1)直接利用平移的性质得出对应点位置进而得出答案;(2)首先确定A、B、C三点绕坐标原点O逆时针旋转90°后的对应点位置,再连接即可;(3)结合图形可得D点位置有三处,分别以AB、AC、BC为对角线确定位置即可.【详解】(1)如图所示,△即为所求作;(2)如图所示,△DEF即为所求作;(3)D1(3,3)、D2(-7,3)、D3(-5,-3).【点睛】此题主要考查了作图--旋转变换,关键是正确确定A、B、C三点旋转后的位置.23、(1)本次一共调查了200名购买者;(2)补全的条形统计图见解析,A种支付方式所对应的圆心角为108;(3)使用A和B两种支付方式的购买者共有928名.【解析】分析:(1)根据B的数量和所占的百分比可以求得本次调查的购买者的人数;(2)根据统计图中的数据可以求得选择A和D的人数,从而可以将条形统计图补充完整,求得在扇形统计图中A种支付方式所对应的圆心角的度数;(3)根据统计图中的数据可以计算出使用A和B两种支付方式的购买者共有多少名.详解:(1)56÷28%=200,即本次一共调查了200名购买者;(2)D方式支付的有:200×20%=40(人),A方式支付的有:200-56-44-40=60(人),补全的条形统计图如图所示,在扇形统计图中A种支付方式所对应的圆心角为:360°×=108°,(3)1600×=928(名),答:使用A和B两种支付方式的购买者共有928名.点睛:本题考查扇形统计图、条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.24、(1)证明见解析;(2)EF-FG=-1.【解析】分析:(1)首先根据角与角之间的等量代换得到∠ABF=∠DAE,结合AB=AD,∠AED=∠BFA,利用AAS证明△ABF≌△DAE,即可得到AE=BF;(2)首先求出BF和AE的长度,然后在Rt△BFG中求出BG=2FG,利用勾股定理得到BG2=FG2+BF2,进而求出FG的长,于是可得EF﹣FG的值.详解:(1)∵四边形ABCD是正方形,∴AB=AD,∠BAF+∠DAE=∠BAD=90°.又∵DE⊥AG,BF∥DE,∴∠AED=∠BFA=90°.∵∠BAF+∠ABF=90°,∴∠ABF=∠DAE.在△ABF和△DAE中,,∴△ABF≌△DAE(AAS),∴AE=BF;(2)∵∠BAG=30°,AB=2,∠BEA=90°,∴BF=AB=1,AF=,∴EF=AF﹣AE=AF﹣BF=﹣1.∵BF⊥AG,∠ABG=90°,∠BAG=30°,∴∠FBC=30°,∴BG=2FG,由BG2=FG2+BF2,∴4FG2=FG2+1,∴FG=,∴EF﹣FG=﹣1﹣=﹣1.点睛:本题主要考查了正方形的性质、全等三角形的判定与性质以及勾股定理等知识,解答本题的关键是根据AAS证明△ABF≌△DAE,此题难度一般.25、(1),,P(2);(3)点E的坐标为、、或.【解析】

(1)由点A、B的坐标,利用待定系数法即可求出直线AB的解析式,再联立直线AB、CD的解析式成方程组,通过解方程组可求出点P的坐标;(2)过点P作PM⊥BC于点M,利用一次函数图象上点的坐标特征可求出点C的坐标,结合点A、B、P的坐标,可得出BC、OA、PM的值,利用三角形的面积公式结合S△PAC=S△PBC-S△ABC即可求出△PAC的面积;(3)利用一次函数图象上点的坐标特征可得出点C、D的坐标,进而可得出CD的长度,分DE=DC、CD=CE、EC=ED三种情况求出点E的坐标,此题得解.【详解】设直线AB的解析式为,将、代入,得:,解得:直线AB的解析式为.联立直线AB、CD的解析式成方程组,得:,解得:,点P的坐标为过点P作于点M,如图1所示.点P的坐标为,.一次函数的图象与x轴交于点C,点C的坐标为,.点A的坐标为,点B的坐标为,,,,.为等腰三角形,或或如图.一次函数的图象与x轴、y轴分别相交于点C和点D,点C的坐标为,点D的坐标为,,.当时,,,点E的坐标为;当时,,点E的坐标为或;当时,点E与点O重合,点E的坐标为.综上所述:点E的坐标为、、或.【点睛】本题考查了待定系数法求一次函数解析式、一次函数图象上点的坐标特征、三角形的面积以及等腰三角形的判定,解题的关键是:(1)由点A、B的坐标,利用待定系数法求出直线AB的解析式;(2)利用切割法找出S△PAC=S△PBC-S△ABC;(3)分DE=DC、CD=CE、EC=ED三种情况找出点E的坐标.26、(1)B(6,0);(2)d=;(3)四边形是矩形,理由见解析【解析】

(1)作DL⊥y轴垂足为L点,DI⊥AB垂足为I,证明△DLC≌△AOC,求得D(2,12),再由S△ABD=AB•DI=1,求得OB=AB−AO=8−2=6,即可求B坐标;

(2)设∠MNB=∠MBN=α,作NK⊥x轴垂足为K,MQ⊥AB垂足为Q,MP⊥NK,垂足为P;证明四边形MPKQ为矩形,再证明△MNP≌△MQB,求出BD的解析式为y=−3x+18,MQ=d,把y=d代入y=−3x+18得d=−3x+18,表达出OQ的值,再由OQ=OK+KQ=t+d,可得d=−;

(3)作NW⊥AB垂足为W,证明△ANW≌△CAO,根据边的关系求得N(4,2);延长NW到Y,使NW=WY,作NS⊥YF,再证明△FHN≌△FSN,可得SF=FH=,NY=2+2=4;设YS=a,FY=FN=a+,在Rt△NYS和Rt△FNS中利用勾股定理求得FN;在Rt△NWF中,利用勾股定理求出WF=6,得到F(10,0);设GF交y轴于点T,设FN的解析式为y=px+q

(p≠0)把F(10,0)N(4,2)代入即可求出直线FN的解析式,联立方程组得到G点坐标;把G点代入得到y=x+3,可知R(4,0),证明△GRA≌△EFR,可得四边形AGFE为平行四边形,再由∠AGF=180°−∠CGF=90°,可证明平行四边形AGFE为矩形.【详解】解:(1)令x=0,y=6,令y=0,x=−2,

∴A(−2,0),B(0,6),

∴AO=2,CO=6,

作DL⊥y轴垂足为L点,DI⊥AB垂足为I,

∴∠DLO=∠COA=90°,∠DCL=∠ACO,DC=AC,

∴△DLC≌△AOC(AAS),

∴DL=AO=2,

∴D的横坐标为2,

把x=2代入y=3x+6得y=12,

∴D(2,12),

∴DI=12,

∵S△ABD=AB•DI=1,

∴AB=8;

∵OB=AB−AO=8−2=6,

∴B(6,0);

(2)∵OC=OB=6,

∴∠OCB=∠CBO=45°,

∵MN=MB,

∴设∠MNB=∠MBN=α,

作NK⊥x轴垂足为K,MQ⊥AB垂足为Q,MP⊥NK,垂足为P;

∴∠NKB=∠MQK=∠MPK=90°,

∴四边形MPKQ为矩形,

∴NK∥CO,MQ=PK;

∵∠KNB=90°−45°=45°,

∴∠MNK=45°+α,∠MBQ=45°+α,

∴∠MNK=∠MBQ,

∵MN=MB,∠NPM=∠MQB=90°,

∴△MNP≌△MQB(AAS),

∴MP=MQ;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论