激光雷达行业深度研究市场空间、技术路线及产业链拆解_第1页
激光雷达行业深度研究市场空间、技术路线及产业链拆解_第2页
激光雷达行业深度研究市场空间、技术路线及产业链拆解_第3页
激光雷达行业深度研究市场空间、技术路线及产业链拆解_第4页
激光雷达行业深度研究市场空间、技术路线及产业链拆解_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

激光雷达行业深度研究-市场空间、技术路线及产业链拆解1感知层传感器助力智能驾驶,激光雷达迎量产元年政策呵护汽车智能驾驶稳健发展,指引智能网联汽车持续渗透政策端,国家政策支持并呵护汽车智能驾驶稳健发展,指引2025年L2、L3级智能网联汽车渗透率超50%。梳理我国智能驾驶重要政策,2020年3月,《汽车驾驶自动化分级》发布,规定汽车驾驶自动化功能的分级标准,将驾驶自动化分成0-5级。2020年11月,《智能网联汽车技术路选图2.0》发布,提出智能网联汽车渗透率持续增加,2025年PA(L2)、CA(L3)级渗透率超50%、HA(L4)级开始进入市场;2030年PA(L2)、CA(L3)级渗透率超70%、HA(L4)级占比达20%,乘用车典型应用场景包括城郊道路、高速公路以及覆盖全国主要城市的城市道路;2035年,FA(L5)级自动驾驶乘用车开始应用。2021年8月,《关于加强智能网联汽车生产企业及产品准入管理的意见》发布,提出加强智能网联汽车数据安全、网络安全、软件升级、功能安全和预期功能安全管理,保证产品质量和生产一致性,推动智能网联汽车产业高质量发展,从政策层面客户汽车智能化有序健康发展。从L2到L3,智能驾驶跃升,需要感知层传感器提供关键支撑车辆自动驾驶级别主要参照0-5级分类。目前全球公认的汽车自动驾驶技术分级标准主要有两个,分别是由美国高速公路安全管理局(NHTSA)和国际自动机工程师学会(SAE)提出。中国于2020年参考SAE的0-5级的分级框架发布了中国版《汽车驾驶自动化分级》,并结合中国当前实际情况进行了部分调整,大体上也将自动驾驶分为0-5级。L3级别是汽车自动化道路的一次跃升。从法规和技术两个维度来看,L3级别自动驾驶都是汽车自动化道路上将的一大跃升。从法规来看,SAE和中国

《汽车自动化分级》规定L0-L2级别均是人类主导驾驶,车辆只做辅助,L0、L1和L2之间的差异主要在于搭载的ADAS功能的多少,而L3开始,人类在驾驶操作中的作用快速下降,车辆自动驾驶系统在条件许可下可以完成所有驾驶操作(作用不亚于驾驶员),驾驶员在系统失效或者超过设计运行条件时对故障汽车进行接管;从技术来看,L0-L2主要运用的传感器有摄像头、超声波雷达和毫米波雷达,L3及之后原有传感器配套数量上升,同时高成本的激光雷达方案将难以避开。我们拆解未来的智能驾驶产业链,将从云-管-端三大层面带来全产业链机遇。智能驾驶将汽车的驾驶能力逐步由人转移到汽车,包括感知、决策和执行三大核心环节。其中,感知环节相当于人的眼睛和耳朵,通过车载摄像头、激光雷达、毫米波达等传感器完成对环境及车辆的感知、搜集周围环境数据并将其传输到决策层;决策环节相当于人的大脑,通过操作系统、芯片与计算平台等对接收到的数据进行实时处理并输出相应的操作与指令任务;执行端相当于人的四肢,将接收到的操作指令执行到动力供给、方向控制、车灯控制等车辆终端部分。感知层为智能驾驶的先决条件,其获取的数据将直接影响决策层的判断与执行层的操作,其探测精度、广度与速度直接影响自动驾驶的行驶安全,在自动驾驶中的地位至关重要。本篇激光雷达深度报告从“端”的层面对感知层的细分核心决策部件进行分析。车企加码布局智能驾驶,激光雷达市场空间广阔车企端,我们对搭载激光雷达的电动智能车型进行梳理。可以发现以下特征:

1)分品牌看,新势力为智能驾驶排头兵,自主品牌对智能驾驶的布局节奏快于合资、外资品牌,价格更低。新势力和自主品牌搭载激光雷达的电动智能车型的价格带位于15-40万元之间,相比之下外资品牌丰田Mirai、奔驰S级等车型的起售价均在50万元以上。2)从重磅车型的传感器配置数量看,激光雷达数量变多。新势力中,

ET7搭载1个Innovusion超远距离高精度激光雷达,小鹏P5和G9均配置2个激光雷达,威马M7配有3个速腾聚创第二代MEMS激光雷达。自主品牌中,长城沙龙机甲龙配置4个华为96线混合固态激光雷达,吉利路特斯Type132配置4个激光雷达,北汽极狐阿尔法S华为HI版配置3个华为微转镜式半固态激光雷达。展望未来,随着激光雷达在乘用车市场的持续渗透,预计2025年全球及国内乘用车市场激光雷达市场规模分别为541、241亿元,CAGR分别为126%、109%。激光雷达价格伴随着技术方案朝半固态及纯固态的推进将有望持续下降,由2021年的1500美元/颗降至2025年的400美元/颗,激光雷达市场空间的打开将由市场需求量的激增持续推动。从需求量及渗透率角度看,预计全球乘用车市场激光雷达需求量将由2021年的22万颗快速提升至2025年的2134万颗,对应全球乘用车市场激光雷达渗透率由2021年的0.2%增至2025年的14.4%;国内乘用车市场激光雷达需求量预计由2021年的13万颗增至2025年的948万颗,对应国内乘用车市场激光雷达渗透率由2021年的0.2%增至2025年的14.7%。从市场规模角度看,预计全球乘用车激光雷达市场规模将由2021年的21亿元增至2025年的541亿元,CAGR为126%;预计国内乘用车激光雷达市场规模将由2021年的13亿元增至2025年的241亿元,CAGR为109%。2激光雷达是实现高级别智能驾驶的核心传感器激光雷达对于实现高级别智能驾驶的必要性智能传感器是智能驾驶车辆的“眼睛”,目前应用于环境感知的主流传感器产品主要包括摄像头、毫米波雷达、超声波雷达和激光雷达四类。总体来看,摄像头在逆光或光影复杂的情况下视觉效果较差,毫米波雷达对静态物体识别效果差,超声波雷达测量距离有限且易受恶劣天气的影响,因此单独依靠摄像头或毫米波雷达的方案去实现智能驾驶是存在缺陷的,而激光雷达可探测多数物体(含静态物体)、探测距离相对更长(0-300米)、精度高(5cm),且可构建环境3D模型、实时性好,因而成为推进智能驾驶到L3级及以上的核心传感器,成本500-2000美元(约人民币2000-13000元之间),高昂的成本也成为制约其大规模应用的原因之一。摄像头:ADAS系统的主要视觉传感器,最为成熟的车载传感器之一摄像头工作原理是目标物体通过是镜头把光线聚拢,然后通过IR滤光片把不需要的红外光滤掉,此时模拟信号进入到传感器COMS芯片,通过AD数字输出,有的摄像头会放置ISP图像处理芯片,把处理后的信号传输给到主机。其主要硬件组件包含镜头组(LENS)、图像COMS传感芯片、线路板基板。按照安装部位的不同,摄像头主要分为前视、后视、侧视以及内置摄像头,以此来实现LDW、FCW、LKA、PA、AVM等功能。实现自动驾驶时全套ADAS功能将安装6个以上摄像头,前视摄像头因需要复杂的算法和芯片,单价在1500元左右,后视、侧视以及内置摄像头单价在200元左右,ADAS的普及应用为车载摄像头传感器带来巨大的发展空间。优缺点来看,摄像头分辨率高、可以探测到物体的质地与颜色,采集信息丰富,包含最接近人类视觉的语义信息。其缺点主要是摄像头受光照、环境影响十分大,在黑夜、雨雪、大雾等能见度较低的情况下,识别率大幅降低,且由于缺乏深度信息、因而三维立体空间感不强,因此摄像头获取的图像信息将主要负责交通标志识别等领域,作为激光雷达和毫米波雷达的补充.毫米波雷达:ADAS系统核心传感器毫米波雷达是工作在毫米波波段探测的雷达,毫米波频率通常在30-300GHz、波长为1-10nm。车载毫米波雷达通过天线向外发射毫米波,接收目标反射信号,经后方处理后快速准确地获取汽车车身周围的物理环境信息,然后根据所探知的物体信息进行目标追踪和识别分类,进而结合车身动态信息进行数据融合,最终通过(ECU)进行智能处理。分类来看,车载毫米波雷达工作的频段为24GHz和77GHz,其中24GHz雷达通常用于感知车辆周围的障碍物,安装在车辆的后保险杠内,能实现的ADAS功能为BSD盲点监测、LDW车道偏离预警、LKA车道保持辅助、PA泊车辅助、LCA变道辅助等;77GHz雷达波长更短、尺寸更小,最大探测距离可达到160米以上,常安装于前保险杠上,用于实现AEB自动紧急制动、FCW前向碰撞预警、ACC自适应巡航、高速公路跟车等ADAS功能。目前77GHz的毫米波雷达系统单价在1000元左右,24GHz毫米波雷达单价在500元左右。完全实现ADAS各项功能一般需要5个毫米波雷达(“1长+4中短”),以奥迪A8为例,其搭载了5个毫米波雷达,其中4个为中距离雷达,位于车辆的四角,1个为长距离雷达,位于前方。优缺点来看,毫米波雷达的优势在于体积小、质量轻和空间分辨率高,可以同时探测目标物体的距离和速度,相比摄像头不受恶劣天气影响,被广泛应用在ADAS系统之中,但是存在对横向目标敏感度低、对小物体检测效果不佳等缺点。超声波雷达:常应用于倒车辅助超声波雷达是通过发射并接收40kHz的超声波,根据时间差算出障碍物距离,其测距精度大约为1-3cm。常见的超声波雷达可以分为UPA(超声波驻车辅助传感器)和APA(自动泊车辅助传感器)。其中UPA一般安装在汽车的保险杠,用于测量汽车前后障碍物,探测距离一般在15-250cm;APA安装于汽车侧面,用于测量侧方障碍物的距离,探测距离一般在30-500cm,相比UPA成本更高、功率更大。通常一套倒车雷达系统需要4个UPA,自动泊车雷达系统需要在倒车雷达的基础上再加4个UPA和4个APA。总体来看,超声波雷达测距原理简单,成本低,制作方便,短距离测量中具有优势,探测范围在0-3米之间,但其传输速度受天气影响较大,不能精确测距,主要用于泊车系统、辅助刹车等。激光雷达:实现L3级自动驾驶的关键激光雷达,是以发射激光束探测目标的位置、速度等特征量的雷达系统。其工作原理是通过发射和接收激光束的时间差,进行探测和测距。激光雷达在自动驾驶中的核心特征可以概括为三维环境感知、高分辨率、抗干扰能力。三维环境感知方面,激光雷达在短时间内向周围环境发射大量的激光束,不仅可以通过测量激光信号的时间差来确定物体距离,还可以通过水平旋转扫描或者向空扫描角度,以及获取不同俯仰角度的信号,来获得被测物体的精确三维信息。高分辨率方面,激光雷达的角分辨率不低于0.1mard,也就是说可以分辨3000米距离上相距0.3米的两个目标;可以同时追踪多个目标,距离分辨率可以达到0.1mard,速度分辨率达到10m/s以内,由于激光频率高,波长短,所以可以获得极高的角度、距离和速度分辨率,如此高的速度和距离分辨率意味着激光雷达可以利用距离多普勒成像技术获得非常清晰的图像。抗干扰能力方面,与微波毫米波雷达雷达易受自然界广泛存在的电磁波影响的情况不同,自然界中能对激光雷达起干扰作用的信号源不多,因此激光雷达抗有源干扰的能力很强,可全天候工作.优缺点来看,由于激光雷达中激光束的发射频率一般每秒几万个脉冲以上,相比传统微波雷达高了很多,因而存在分辨率高、精度高(厘米级)、探测距离长的优势,此外抗干扰能力相比电磁波更强,由于生成目标的多维头像,因而获取的信息量更丰富,且不受目标物体运动状态的影响。但受雨雪、雾霾天气影响穿透性变差、测量精度会下降,且难以分辨交通标识和红绿灯,高昂的成本也成为制约激光雷达大规模量产的关键因素。智能化时代,多传感器融合是未来趋势。不同传感器的原理和功能各不相同,在不同的场景里发挥各自的优势,难以相互替代。单种传感器特性突出,均不能形成完全信息覆盖,多传感器融合是未来发展必然趋势。未来的可以视为“移动的传感器平台”,将装备有大量的传感器。并且随着智能驾驶从L2到L3级及以上不断推进,激光雷达凭借其精度高、探测距离长、可3D环境建模的特性,重要性越发凸显。如何看智能驾驶之纯视觉方案与激光雷达方案之争?自动驾驶感知领域技术路线,目前主要形成两大阵营:以为代表的“以摄像头为主的视觉感知”解决方案和以Waymo为代表的“3D激光雷达感知”

解决方案.“以摄像头为主的视觉感知”解决方案主要包含信息采集、特征提取、训练学习、评估、反馈改进五大步骤,通过数据+算法+反馈不断垂直整合,完善自动驾驶能力。1)信息采集:特斯拉中主要通过大量的传感器(如前置摄像头、后置摄像头、超声波雷达、毫米波雷达)进行信息收集;2)特征提取:通过汽车内外置的大量传感器收集大量信息之后,特斯拉使用神经网络的深度学习算法来进行特征提取。特斯拉需要同时判断车辆、人行道、交通灯、障碍物、行人、驾驶员、温度、湿度等多个环境变量的相互关系,因此算力系统必须超强,同时运行多个神经网络(约50个)才能工作。因此采用一种特殊的共享主干神经网络结构HydraNets进行处理,首先把所有的运算任务都分配给到一个大型的共享骨干网络,在骨干网络中又细分多个子网络,把运算任务分配给子网络进行处理,每个子网络只需要学习训练一小部分图像信息、提取特征,处理完了之后汇总给到主干网络再计算处理;3)训练学习:

特斯拉使用PyTorch进行分布式训练,除了使用大量的数据进行训练分析之外,还进行预测处理。特斯拉使用PyTorch进行分布式训练,不断训练系统对于行人、路径、周边环境的判断能力,提供多种路径规划算法供工程师进行选择;

4)评估与反馈:通过驾驶系统提供

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论