电力系统分析潮流计算实验报告(完整版)资料_第1页
电力系统分析潮流计算实验报告(完整版)资料_第2页
电力系统分析潮流计算实验报告(完整版)资料_第3页
电力系统分析潮流计算实验报告(完整版)资料_第4页
电力系统分析潮流计算实验报告(完整版)资料_第5页
已阅读5页,还剩49页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

电力系统分析潮流计算实验报告(完整版)资料(可以直接使用,可编辑优秀版资料,欢迎下载)

电力系统分析潮流计算实验报告电力系统分析潮流计算实验报告(完整版)资料(可以直接使用,可编辑优秀版资料,欢迎下载)姓名:XXXXXX学号:XXXXXXXXXX班级:XXXXXXXX一、实验目的掌握潮流计算计算机算法的方法,熟悉MATLAB的程序调试方法。二、实验准备根据课程内容,熟悉MATLAB软件的使用方法,自行学习MATLAB程序的基础语法,并根据所学知识编写潮流计算牛顿拉夫逊法(或PQ分解法)的计算程序,用相应的算例在MATLAB上进行计算、调试和验证。三、实验要求每人一组,在实验课时内,调试和修改运行程序,用算例计算输出潮流结果。四、程序流程五、实验程序%本程序的功能是用牛拉法进行潮流计算%原理介绍详见鞠平著《电气工程》%默认数据为鞠平著《电气工程》例8.4所示数据%B1是支路参数矩阵%第一列和第二列是节点编号。节点编号由小到大编写%对于含有变压器的支路,第一列为低压侧节点编号,第二列为高压侧节点编号%第三列为支路的串列阻抗参数,含变压器支路此值为变压器短路电抗%第四列为支路的对地导纳参数,含变压器支路此值不代入计算%第五烈为含变压器支路的变压器的变比,变压器非标准电压比%第六列为变压器是否是否含有变压器的参数,其中“1”为含有变压器,“0”为不含有变压器%B2为节点参数矩阵%第一列为节点注入发电功率参数%第二列为节点负荷功率参数%第三列为节点电压参数%第四列%第五列%第六列为节点类型参数,“1”为平衡节点,“2”为PQ节点,“3”为PV节点参数%X为节点号和对地参数矩阵%第一列为节点编号%第二列为节点对地参数%默认算例%n=4;%n1=4;%isb=4;%pr=0.00001;%B1=[120.1667i00.88641;130.1302+0.2479i0.0258i10;140.1736+0.3306i0.0344i10;340.2603+0.4959i0.0518i10];%B2=[001002;0-0.5-0.3i1002;0.201.05003;0-0.15-0.1i1.05001];%X=[10;20.05i;30;40];clear;clc;num=input('是否采用默认数据?(1-默认数据;2-手动输入)');ifnum==1n=4;n1=4;isb=4;pr=0.00001;B1=[120.1667i00.88641;130.1302+0.2479i0.0258i10;140.1736+0.3306i0.0344i10;340.2603+0.4959i0.0518i10];B2=[001002;0-0.5-0.3i1002;0.201.05003;0-0.15-0.1i1.05001];X=[10;20.05i;30;40];elsen=input('请输入节点数:n=');n1=input('请输入支路数:n1=');isb=input('请输入平衡节点号:isb=');pr=input('请输入误差精度:pr=');B1=input('请输入支路参数:B1=');B2=input('请输入节点参数:B2=');X=input('节点号和对地参数:X=');endTimes=1;%迭代次数%创建节点导纳矩阵Y=zeros(n);fori=1:n1ifB1(i,6)==0%不含变压器的支路p=B1(i,1);q=B1(i,2);Y(p,q)=Y(p,q)-1/B1(i,3);Y(q,p)=Y(p,q);Y(p,p)=Y(p,p)+1/B1(i,3)+0.5*B1(i,4);Y(q,q)=Y(q,q)+1/B1(i,3)+0.5*B1(i,4);else%含有变压器的支路p=B1(i,1);q=B1(i,2);Y(p,q)=Y(p,q)-B1(i,5)/B1(i,3);Y(q,p)=Y(p,q);Y(p,p)=Y(p,p)+B1(i,5)/B1(i,3)+(1-B1(i,5))/B1(i,3);Y(q,q)=Y(q,q)+B1(i,5)/B1(i,3)+(B1(i,5)*(B1(i,5)-1))/B1(i,3);endendfori=1:n1Y(i,i)=Y(i,i)+X(i,2);%计及补偿电容电纳enddisp('导纳矩阵为:');disp(Y);%显示导纳矩阵%初始化OrgS、DetaSOrgS=zeros(2*n-2,1);DetaS=zeros(2*n-2,1);%创建OrgS,用于存储初始功率参数h=0;j=0;fori=1:n%对PQ节点的处理ifi~=isb&B2(i,6)==2%不是平衡点&是PQ点h=h+1;forj=1:n%公式8-74%Pi=ei*(Gij*ej-Bij*fj)+fi*(Gij*fj+Bij*ej)%Qi=fi*(Gij*ej-Bij*fj)-ei*(Gij*fj+Bij*ej)OrgS(2*h-1,1)=OrgS(2*h-1,1)+real(B2(i,3))*(real(Y(i,j))*real(B2(j,3))-imag(Y(i,j))*imag(B2(j,3)))+imag(B2(i,3))*(real(Y(i,j))*imag(B2(j,3))+imag(Y(i,j))*real(B2(j,3)));OrgS(2*h,1)=OrgS(2*h,1)+imag(B2(i,3))*(real(Y(i,j))*real(B2(j,3))-imag(Y(i,j))*imag(B2(j,3)))-real(B2(i,3))*(real(Y(i,j))*imag(B2(j,3))+imag(Y(i,j))*real(B2(j,3)));endendendfori=1:n%对PV节点的处理,注意这时不可再将h初始化为0ifi~=isb&B2(i,6)==3%不是平衡点&是PV点h=h+1;forj=1:n%公式8-75-a%Pi=ei*(Gij*ej-Bij*fj)+fi*(Gij*fj+Bij*ej)%Qi=fi*(Gij*ej-Bij*fj)-ei*(Gij*fj+Bij*ej)OrgS(2*h-1,1)=OrgS(2*h-1,1)+real(B2(i,3))*(real(Y(i,j))*real(B2(j,3))-imag(Y(i,j))*imag(B2(j,3)))+imag(B2(i,3))*(real(Y(i,j))*imag(B2(j,3))+imag(Y(i,j))*real(B2(j,3)));OrgS(2*h,1)=OrgS(2*h,1)+imag(B2(i,3))*(real(Y(i,j))*real(B2(j,3))-imag(Y(i,j))*imag(B2(j,3)))-real(B2(i,3))*(real(Y(i,j))*imag(B2(j,3))+imag(Y(i,j))*real(B2(j,3)));endendend%创建PVU用于存储PV节点的初始电压PVU=zeros(n-h-1,1);t=0;fori=1:nifB2(i,6)==3t=t+1;PVU(t,1)=B2(i,3);endend%创建DetaS,用于存储有功功率、无功功率和电压幅值的不平衡量h=0;fori=1:n%对PQ节点的处理ifi~=isb&B2(i,6)==2h=h+1;DetaS(2*h-1,1)=real(B2(i,2))-OrgS(2*h-1,1);%delPiDetaS(2*h,1)=imag(B2(i,2))-OrgS(2*h,1);%delQiendendt=0;fori=1:n%对PV节点的处理,注意这时不可再将h初始化为0ifi~=isb&B2(i,6)==3h=h+1;t=t+1;DetaS(2*h-1,1)=real(B2(i,1))-OrgS(2*h-1,1);%delPiDetaS(2*h,1)=real(PVU(t,1))^2+imag(PVU(t,1))^2-real(B2(i,3))^2-imag(B2(i,3))^2;%delUiendend%DetaS%创建I,用于存储节点电流参数i=zeros(n-1,1);h=0;fori=1:nifi~=isbh=h+1;I(h,1)=(OrgS(2*h-1,1)-OrgS(2*h,1)*sqrt(-1))/conj(B2(i,3));%conj求共轭endend%创建Jacbi(雅可比矩阵)Jacbi=zeros(2*n-2);h=0;k=0;fori=1:n%对PQ节点的处理ifB2(i,6)==2h=h+1;forj=1:nifj~=isbk=k+1;ifi==j%对角元素的处理Jacbi(2*h-1,2*k-1)=-imag(Y(i,j))*real(B2(i,3))+real(Y(i,j))*imag(B2(i,3))+imag(I(h,1));Jacbi(2*h-1,2*k)=real(Y(i,j))*real(B2(i,3))+imag(Y(i,j))*imag(B2(i,3))+real(I(h,1));Jacbi(2*h,2*k-1)=-Jacbi(2*h-1,2*k)+2*real(I(h,1));Jacbi(2*h,2*k)=Jacbi(2*h-1,2*k-1)-2*imag(I(h,1));else%非对角元素的处理Jacbi(2*h-1,2*k-1)=-imag(Y(i,j))*real(B2(i,3))+real(Y(i,j))*imag(B2(i,3));Jacbi(2*h-1,2*k)=real(Y(i,j))*real(B2(i,3))+imag(Y(i,j))*imag(B2(i,3));Jacbi(2*h,2*k-1)=-Jacbi(2*h-1,2*k);Jacbi(2*h,2*k)=Jacbi(2*h-1,2*k-1);endifk==(n-1)%将用于内循环的指针置于初始值,以确保雅可比矩阵换行k=0;endendendendendk=0;fori=1:n%对PV节点的处理ifB2(i,6)==3h=h+1;forj=1:nifj~=isbk=k+1;ifi==j%对角元素的处理Jacbi(2*h-1,2*k-1)=-imag(Y(i,j))*real(B2(i,3))+real(Y(i,j))*imag(B2(i,3))+imag(I(h,1));Jacbi(2*h-1,2*k)=real(Y(i,j))*real(B2(i,3))+imag(Y(i,j))*imag(B2(i,3))+real(I(h,1));Jacbi(2*h,2*k-1)=2*imag(B2(i,3));Jacbi(2*h,2*k)=2*real(B2(i,3));else%非对角元素的处理Jacbi(2*h-1,2*k-1)=-imag(Y(i,j))*real(B2(i,3))+real(Y(i,j))*imag(B2(i,3));Jacbi(2*h-1,2*k)=real(Y(i,j))*real(B2(i,3))+imag(Y(i,j))*imag(B2(i,3));Jacbi(2*h,2*k-1)=0;Jacbi(2*h,2*k)=0;endifk==(n-1)%将用于内循环的指针置于初始值,以确保雅可比矩阵换行k=0;endendendendenddisp('初始雅可比矩阵为:');disp(Jacbi);%求解修正方程,获取节点电压的不平衡量DetaU=zeros(2*n-2,1);DetaU=inv(Jacbi)*DetaS;%inv矩阵求逆%DetaU%修正节点电压j=0;fori=1:n%对PQ节点处理ifB2(i,6)==2j=j+1;B2(i,3)=B2(i,3)+DetaU(2*j,1)+DetaU(2*j-1,1)*sqrt(-1);endendfori=1:n%对PV节点的处理ifB2(i,6)==3j=j+1;B2(i,3)=B2(i,3)+DetaU(2*j,1)+DetaU(2*j-1,1)*sqrt(-1);endend%B2%开始循环**********************************************************************whileabs(max(DetaU))>prOrgS=zeros(2*n-2,1);h=0;j=0;fori=1:nifi~=isb&B2(i,6)==2h=h+1;forj=1:nOrgS(2*h-1,1)=OrgS(2*h-1,1)+real(B2(i,3))*(real(Y(i,j))*real(B2(j,3))-imag(Y(i,j))*imag(B2(j,3)))+imag(B2(i,3))*(real(Y(i,j))*imag(B2(j,3))+imag(Y(i,j))*real(B2(j,3)));OrgS(2*h,1)=OrgS(2*h,1)+imag(B2(i,3))*(real(Y(i,j))*real(B2(j,3))-imag(Y(i,j))*imag(B2(j,3)))-real(B2(i,3))*(real(Y(i,j))*imag(B2(j,3))+imag(Y(i,j))*real(B2(j,3)));endendendfori=1:nifi~=isb&B2(i,6)==3h=h+1;forj=1:nOrgS(2*h-1,1)=OrgS(2*h-1,1)+real(B2(i,3))*(real(Y(i,j))*real(B2(j,3))-imag(Y(i,j))*imag(B2(j,3)))+imag(B2(i,3))*(real(Y(i,j))*imag(B2(j,3))+imag(Y(i,j))*real(B2(j,3)));OrgS(2*h,1)=OrgS(2*h,1)+imag(B2(i,3))*(real(Y(i,j))*real(B2(j,3))-imag(Y(i,j))*imag(B2(j,3)))-real(B2(i,3))*(real(Y(i,j))*imag(B2(j,3))+imag(Y(i,j))*real(B2(j,3)));endendend%OrgS%创建DetaSh=0;fori=1:nifi~=isb&B2(i,6)==2h=h+1;DetaS(2*h-1,1)=real(B2(i,2))-OrgS(2*h-1,1);DetaS(2*h,1)=imag(B2(i,2))-OrgS(2*h,1);endendt=0;fori=1:nifi~=isb&B2(i,6)==3h=h+1;t=t+1;%DetaS(2*h-1,1)=real(B2(i,2))-OrgS(2*h-1,1);DetaS(2*h-1,1)=real(B2(i,1))-OrgS(2*h-1,1);DetaS(2*h,1)=real(PVU(t,1))^2+imag(PVU(t,1))^2-real(B2(i,3))^2-imag(B2(i,3))^2;endend%DetaS%创建Ii=zeros(n-1,1);h=0;fori=1:nifi~=isbh=h+1;I(h,1)=(OrgS(2*h-1,1)-OrgS(2*h,1)*sqrt(-1))/conj(B2(i,3));endend%I%创建JacbiJacbi=zeros(2*n-2);h=0;k=0;fori=1:nifB2(i,6)==2h=h+1;forj=1:nifj~=isbk=k+1;ifi==jJacbi(2*h-1,2*k-1)=-imag(Y(i,j))*real(B2(i,3))+real(Y(i,j))*imag(B2(i,3))+imag(I(h,1));Jacbi(2*h-1,2*k)=real(Y(i,j))*real(B2(i,3))+imag(Y(i,j))*imag(B2(i,3))+real(I(h,1));Jacbi(2*h,2*k-1)=-Jacbi(2*h-1,2*k)+2*real(I(h,1));Jacbi(2*h,2*k)=Jacbi(2*h-1,2*k-1)-2*imag(I(h,1));elseJacbi(2*h-1,2*k-1)=-imag(Y(i,j))*real(B2(i,3))+real(Y(i,j))*imag(B2(i,3));Jacbi(2*h-1,2*k)=real(Y(i,j))*real(B2(i,3))+imag(Y(i,j))*imag(B2(i,3));Jacbi(2*h,2*k-1)=-Jacbi(2*h-1,2*k);Jacbi(2*h,2*k)=Jacbi(2*h-1,2*k-1);endifk==(n-1)k=0;endendendendendk=0;fori=1:nifB2(i,6)==3h=h+1;forj=1:nifj~=isbk=k+1;ifi==jJacbi(2*h-1,2*k-1)=-imag(Y(i,j))*real(B2(i,3))+real(Y(i,j))*imag(B2(i,3))+imag(I(h,1));Jacbi(2*h-1,2*k)=real(Y(i,j))*real(B2(i,3))+imag(Y(i,j))*imag(B2(i,3))+real(I(h,1));Jacbi(2*h,2*k-1)=2*imag(B2(i,3));Jacbi(2*h,2*k)=2*real(B2(i,3));elseJacbi(2*h-1,2*k-1)=-imag(Y(i,j))*real(B2(i,3))+real(Y(i,j))*imag(B2(i,3));Jacbi(2*h-1,2*k)=real(Y(i,j))*real(B2(i,3))+imag(Y(i,j))*imag(B2(i,3));Jacbi(2*h,2*k-1)=0;Jacbi(2*h,2*k)=0;endifk==(n-1)k=0;endendendendend%JacbiDetaU=zeros(2*n-2,1);DetaU=inv(Jacbi)*DetaS;%DetaU%修正节点电压j=0;fori=1:nifB2(i,6)==2j=j+1;B2(i,3)=B2(i,3)+DetaU(2*j,1)+DetaU(2*j-1,1)*sqrt(-1);endendfori=1:nifB2(i,6)==3j=j+1;B2(i,3)=B2(i,3)+DetaU(2*j,1)+DetaU(2*j-1,1)*sqrt(-1);endend%B2Times=Times+1;%迭代次数加1enddisp('迭代次数为:');disp(Times);disp('收敛时电压修正量为::');disp(DetaU);fork=1:nE(k)=B2(k,3);e(k)=real(E(k));f(k)=imag(E(k));V(k)=sqrt(e(k)^2+f(k)^2);sida(k)=atan(f(k)./e(k))*180./pi;end%===============计算各输出量===========================disp('各节点的实际电压标幺值E为(节点号从小到大排列):');disp(E);%显示各节点的实际电压标幺值E用复数表示disp('-----------------------------------------------------')disp('各节点的电压大小V为(节点号从小到大排列):');disp(V);%显示各节点的电压大小V的模值disp('-----------------------------------------------------');disp('各节点的电压相角sida为(节点号从小到大排列):');disp(sida);%显示各节点的电压相forp=1:nC(p)=0;forq=1:nC(p)=C(p)+conj(Y(p,q))*conj(E(q));%计算各节点的注入电流的共轭值endS(p)=E(p)*C(p);%计算各节点的功率S=电压X注入电流的共轭值enddisp('各节点的功率S为(节点号从小到大排列):');disp(S);%显示各节点的注入功率Sline=zeros(n1,5);disp('-----------------------------------------------------');disp('各条支路的首端功率Si为(顺序同您输入B1时一致):');fori=1:n1p=B1(i,1);q=B1(i,2);Sline(i,1)=B1(i,1);Sline(i,2)=B1(i,2);ifB1(i,6)==0Si(p,q)=E(p)*(conj(E(p))*conj(B1(i,4)./2)+(conj(E(p)*B1(i,5))-conj(E(q)))*conj(1./(B1(i,3)*B1(i,5))));Siz(i)=Si(p,q);elseSi(p,q)=E(p)*(conj(E(p))*((1-B1(i,5))/B1(i,3))+(conj(E(p))-conj(E(q)))*(B1(i,5)/B1(i,3)));Siz(i)=Si(p,q);endSSi(p,q)=Si(p,q);Sline(i,3)=Siz(i);ZF=['S(',num2str(p),',',num2str(q),')=',num2str(SSi(p,q))];disp(ZF);enddisp('-----------------------------------------------------');disp('各条支路的末端功率Sj为(顺序同您输入B1时一致):');fori=1:n1p=B1(i,1);q=B1(i,2);ifB1(i,6)==0Sj(q,p)=E(q)*(conj(E(q))*conj(B1(i,4)./2)+(conj(E(q)./B1(i,5))-conj(E(p)))*conj(1./(B1(i,3)*B1(i,5))));Sjy(i)=Sj(q,p);elseSj(q,p)=E(q)*(conj(E(q))*((B1(i,5)*(B1(i,5)-1))/B1(i,3))+(conj(E(q))-conj(E(p)))*(B1(i,5)/B1(i,3)));Sjy(i)=Sj(q,p);endSSj(q,p)=Sj(q,p);Sline(i,4)=Sjy(i);ZF=['S(',num2str(q),',',num2str(p),')=',num2str(SSj(q,p))];disp(ZF);enddisp('-----------------------------------------------------');disp('各条支路的功率损耗DS为(顺序同您输入B1时一致):');fori=1:n1p=B1(i,1);q=B1(i,2);DS(i)=Si(p,q)+Sj(q,p);DDS(i)=DS(i);Sline(i,5)=DS(i);ZF=['DS(',num2str(p),',',num2str(q),')=',num2str(DDS(i))];disp(ZF);enddisp('-----------------------------------------------------');disp('各支路首端编号末端编号首端功率末端功率线路损耗');disp(Sline);六、运行结果及其分析是否采用默认数据?(1-默认数据;2-手动输入)1导纳矩阵为:2.9056-11.5015i0.0000+5.3173i-1.6606+3.1617i-1.2450+2.3710i0.0000+5.3173i0.0000-4.6633i0.0000+0.0000i0.0000+0.0000i-1.6606+3.1617i0.0000+0.0000i2.4904-4.7039i-0.8298+1.5809i-1.2450+2.3710i0.0000+0.0000i-0.8298+1.5809i2.0749-3.9089i初始雅可比矩阵为:11.12672.7603-5.31730-3.1617-1.6606-3.050911.87620-5.31731.6606-3.1617-5.317305.31730000-5.317304.009200-3.3198-1.7436004.82172.6980000002.1000迭代次数为:4收敛时电压修正量为::1.0e-05*0.0349-0.2445-0.0101-0.5713-0.0931-0.0073各节点的实际电压标幺值E为(节点号从小到大排列):0.9673-0.0655i1.0252-0.1666i1.0495-0.0337i1.0500+0.0000i-----------------------------------------------------各节点的电压大小V为(节点号从小到大排列):0.96951.03871.05001.0500-----------------------------------------------------各节点的电压相角sida为(节点号从小到大排列):-3.8734-9.2315-1.84190各节点的功率S为(节点号从小到大排列):-0.0000+0.0000i-0.5000-0.3000i0.2000+0.1969i0.3277+0.0443i-----------------------------------------------------各条支路的首端功率Si为(顺序同您输入B1时一致):S(3,4)=-0.055551+0.0017528i-----------------------------------------------------各条支路的末端功率Sj为(顺序同您输入B1时一致):S(2,1)=0.5+0.24606iS(3,1)=0.25555+0.1952iS(4,1)=0.2712+0.1014i-----------------------------------------------------各条支路的功率损耗DS为(顺序同您输入B1时一致):DS(1,2)=0-0.06107i-----------------------------------------------------各支路首端编号末端编号首端功率末端功率线路损耗1.0000+0.0000i2.0000+0.0000i-0.5000-0.3071i0.5000+0.2461i0.0000-0.0611i1.0000+0.0000i3.0000+0.0000i-0.2427-0.1970i0.2556+0.1952i0.0129-0.0018i1.0000+0.0000i4.0000+0.0000i-0.2573-0.1101i0.2712+0.1014i0.0139-0.0087i3.0000+0.0000i4.0000+0.0000i-0.0556+0.0018i0.0565-0.0571i0.0009-0.0553i七、实验体会及感悟通过这次实验,首先让我对matlab软件有了初步的了解,对它强大的矩阵运算能力有了更深的体会,同时掌握了设置断点和断点调试的一般方法,结合课本上的程序流程图和参考资料上的例子单步跟踪调试,再一次的熟悉了牛顿拉夫逊法潮流计算的一般方法和步骤,对计算机计算潮流计算有了更进一步的认识,在学习潮流计算时,虽然依次学习了节点导纳矩阵,功率方程、雅可比矩阵,但不能将它们联系起来,更不知道其中的原委,通过程序的编写,知道了其中的联系,也知道了每个方程、矩阵在计算中的作用。同时还把直角坐标和极坐标方法进行对比,发现极坐标下的运算还是相对简便一些,但是直角坐标下的计算相对比较容易理解。计算机为我们省去了大量的人工计算,希望在以后的学习中能接触到更多的软件,学习到更多的知识。 物理化学实验报告实验名称:燃烧焓的测定学院:化学工程学院专业:化学工程与工艺班级:姓名:学号:指导教师:日期:一、实验目的1、用氧弹式量热计测定萘的燃烧焓。2、明确燃烧焓的定义,了解恒压燃烧热与恒容燃烧热的差别。3、了解氧弹式量热计中主要部分的作用,掌握氧弹式量热计的实验技术。4、学会用雷诺作图法校正温度变化值。二、实验原理1、燃烧焓是热化学中重要的基本数据,在非体积功为零的情况下,物质的燃烧焓常以物质燃烧时的燃烧热来表示,即△CHm=Qp,m。测定物质的燃烧焓实际就是测定物质在等温、等压下的燃烧热。2、量热法是热力学实验的一个基本方法。等压燃烧热(Qp)与等容燃烧热(QV)之间的关系为:Qp,m=QV,m+∑ν(g)RT3、氧弹式量热计属于一个等容系统,且热力学能变△U=0。即△CUB+△CU引燃丝+△U量热计=0;可化作:mBQV,B+lQB+K△T=0三、实验准备1、主要药品:萘约0.6g,苯甲酸约0.8g。2、主要仪器:氧弹式量热计、压片机、贝克曼温度计、温度计(100℃)、引燃丝(15㎝)、量筒(2000ml)、氧气钢瓶及减压阀等。四、实验装置图四、实验步骤1、热容量K的测定(1)截取15cm引燃丝,将其中部绕成环状。(2)称取苯甲酸约0.8g,压成片状,并放桌上敲击2次,去除没压紧的部分,再次称量。(3)拧开氧弹盖放在专用支架上,引燃丝两端固定在两电极柱上,药片放于坩埚中,使引燃丝与药片表面接触,盖上氧弹盖。(4)将氧弹放于充氧器底盖上,充进1Mp的氧,1分钟后用放气阀将氧弹中的氧气放出,再充氧气约1分钟,查漏。(5)量取3000ml的水倒入内桶,氧弹放于内桶底座上,点火插头插在氧弹电极上,将贝克曼温度计的传感器竖直插入量热计盖上的孔中。(6)打开电源,按“搅拌”。约5分钟后,开始初期的读数,隔半分钟读数一次,读第10次的同时按“点火”,仍半分钟读一次,直至两温差小于0.002℃时,再读数10次。(7)停止搅拌,取出传感器,拔掉引火导线,取出氧弹并擦干外壳,用放气阀放掉氧气,打开氧弹盖,检查燃烧是否完全。(8)取出引燃丝,量其剩余长度。2、萘的燃烧焓测定(1)截取15cm引燃丝,将其中部绕成环状。(2)称取萘约0.6g,压成片状,并放桌上敲击,去除没压紧的部分,再次称量。(3)拧开氧弹盖放在专用支架上,引燃丝两端固定在两电极柱上,药片放于坩埚中,使引燃丝与药片表面接触,盖上氧弹盖。(4)将氧弹放于充氧器底盖上,充进1Mp的氧,1分钟后用放气阀将氧弹中的氧气放出,再充氧气约1分钟,查漏。(5)量取3000ml的水倒入内桶,氧弹放于内桶底座上,点火插头插在氧弹电极上,将贝克曼温度计的传感器竖直插入量热计盖上的孔中。(6)打开电源,按“搅拌”。约5分钟后,开始初期的读数,隔半分钟读数一次,读第10次的同时按“点火”,仍半分钟读一次,直至两温差小于0.002℃时,再读数10次。(7)停止搅拌,取出传感器,拔掉引火导线,取出氧弹并擦干外壳,用放气阀放掉氧气,打开氧弹盖,检查燃烧是否完全。(8)取出引燃丝,量其剩余长度。五、注意事项1、氧弹充气时要注意安全,人应站在侧面,减压阀指针在1-2MPa,切不可超过3Mpa。2、燃烧丝与两电极及样品片一定要接触良好,而且不能有短路。3、一定要将点燃镍丝的中间螺旋段紧贴在样品圆片上,并用棉纱轻轻裹一下。4、测定仪器热容与测定样品的条件应该一致。5、待测样品一定要干燥,样品压片要压紧。六、数据记录与处理室温:20.3℃大气压强:101.54KPa5-1、苯甲酸燃烧的记录苯甲酸的质量:0.6922g引燃丝初始长度:15.0cm引燃丝剩余长度:1.2cm读数序号(30s读一次)初期温度t/℃读数序号(30s读一次)主期温度t/℃读数序号(30s读一次)末期温度t/℃116.081116.133117.278216.078216.458217.280316.077316.747317.282416.075416.921417.283516.073517.026517.283616.072617.097617.283716.071717.150717.283816.068817.186817.281916.067917.213917.2801016.0661017.2601017.2791117.2431217.2541317.2631417.2711517.2755-2、萘燃烧的记录萘的质量:0.5643g引燃丝初始长度:15.0cm引燃丝剩余长度:3.8cm读数序号(30s读一次)初期温度t/℃读数序号(30s读一次)主期温度t/℃读数序号(30s读一次)末期温度t/℃117.529117.532118.998217.527217.812218.998317.525318.136318.998417.522418.424418.997517.519518.607518.996617.517618.731618.994717.514718.812718.992817.511818.865818.988917.508918.904918.9851017.5051018.9321018.9821118.9521218.9671318.9781418.9921518.9955-3、苯甲酸燃烧的温度曲线图5-4、萘燃烧的温度曲线图(1)计算K值:△CHm(苯甲酸)=-3226.7KJ/mol,Q引燃丝=-6.699J/cm则△CUm(苯甲酸)=△CHm(苯甲酸)-(-0.5)*RT=-3225.46KJ/mol△T=17.30-16.05=1.25KK=-(mBQV,B+lQB)/△T=-(-0.6922*3225.46*1000/122-6.699*13.8)/1.25=14714.37J.℃(2)计算萘的燃烧焓:△T=18.90-17.49=1.41KQv,B=-(lQB+K△T)/mB=-(+1)/0.5643=-36633.4J/g△CUm=Qv,B*200/1000=-7326.68J/mol△CHm=△CUm+3RT=-7319.24J/mol七、思考与讨论1、本次实验测得的萘的燃烧焓偏高,主要的误差在于药品称量时电子天平的读数,实验温度的读取,数据拟合时的读数等。2、把固体样品压成片状是为了方便称量和安装试验装置,避免在称量和装药品时有损失,影响实验数据的准确性。而且在点火时受热就比较均衡,固体样品更容易燃烧充分,在测定液体样品时,将液体样品装入坩埚中,将点火丝固定在电极上,有螺旋的部位浸入样品内,并注意点火丝不与坩埚接触。3、本实验中,哪些为体系?哪些为环境?实验过程中有无热损耗,如何降低热损耗?答:氧弹内部空间为体系,氧弹以外为环境,实验过程中有热损耗,可增加氧弹壁的厚度来降低热损耗。

结合实例谈系统分析的步骤和方法要旨初识系统工程在阐释系统分析的步骤和方法之前,我想,有必要说一说系统和系统工程的相关内容。“系统”这个概念应该说是在人类认识客观世界的过程中,逐渐形成的一个系统概念,并且随着社会的进步和科技的发展,其概念也相应的不断变化。在网上各种百科辞典中搜索“系统”和“系统工程”,虽然各种解释可能不是完全一样的,但是所有的解释中都会提到“有组织”,“有规律”,“整体”,“综合体”等这些词语,因此可以给系统下一个更便于理解的定义:系统是具有一定功能的,相互之间既有有机联系的,游戏多要素或者构成部分组成的一个整体。从这个定义来看,现实生活中的种种事物似乎都属于系统的范畴,这是因为系统的概念本身就来自于多生活中事物规律的提炼和总结。从“系统”的定义就可以归纳出其具有的共同特性:一、层次性;二、整体性;三、集合性;四、相关性;五、目的性;六、环境适应性。这些特性根据“系统”的定义很容易理解,这也不是论文重心,不再赘述。系统工程就是利用系统的概念和一些特殊的方法对被分析的对象进行分析,其目的就是为了使系统运行达到最优化;由此可以给“系统工程”下一个简单的定义:系统工程就是从系统的观点出发,跨学科的考虑问题,运用工程的方法去研究和解决各种系统问题,以实现目标系统的综合最优化。虽然说系统的概念自古就有,但是利用系统工程去解决显示问题却出现的很晚,20世纪60年代美国的阿波罗登月计划,是利用系统工程解决实际问题的最早的典型例子,这个例子也是本文需要援用的实例。系统分析简介系统分析技术是系统工程的基础,是完成系统工程问题的中心环节,广义上认为系统分析即为系统工程,狭义上认为系统分析是系统工程的一项优化技术。在《美国大百科全书》中对于系统分析的解释如下:系统分析是研究相互影响的因素的组成和运用情况,其特点是完成的而不是零星的处理问题;它要求人们考虑各种主要的变化因素及其相互的影响,并要用科学和数学的方法对系统进行研究与应用。因此系统分析师进行系统研究帮助进行有效决策的一种方法,采用系统分析方法是最大的特点就是分析人员之需要对问题的综合和整体的认识,而可以忽略内部各种因素的相互关系。了解系统分析的特点是利用其进行解决问题的基础,系统分析的主要特点总结如下:以系统整体最优为目标强调系统要素之间的联系寻求解决问题的方案是其主要目的运用定量方法解决系统问题凭借价值判断住处决策系统分析的步骤概要系统分析处理问题的方法从系统的观点出发,充分分析系统中而各种因素的互相影响,在对系统的目的有了充分的理解之后,提出解决问题的最优方案。这种系统分析的流程已经形成了一套完整的成熟的逻辑框架。如下所示:系统分析的主要活动如下所示:系统分析的方法论上述的系统分析的逻辑框架对于系统分析的一般步骤描述的很清晰。下面先对系统分析的方法论以系统分析的步骤为顺序进行一个轮廓式的列举,具体的说明不作赘述,而仅在以后面的实例中来体现实例中用到的方法。阐明问题问题的性质和范围。问题的目标。环境和条件评价指

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论