光伏LED屏幕系统设计(课程汇报)_第1页
光伏LED屏幕系统设计(课程汇报)_第2页
光伏LED屏幕系统设计(课程汇报)_第3页
光伏LED屏幕系统设计(课程汇报)_第4页
光伏LED屏幕系统设计(课程汇报)_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

光伏LED屏幕系统设计(课程汇报)第二章方案设计2.1点阵显示模块原理LED显示屏是由一个一个的发光二极管点阵构成的,要构成大屏幕的LED显示屏就需要多个发光二极管。构成LED屏幕的方法有两种,一是由单个的发光二极管逐点连接起来;二是选用一些由单个发光二极管构成的LED点阵子模块构成大的LED点阵模块。这两种屏幕构成方法各有缺点,单个发光二极管构成显示屏优点在于当单个的发光二极管出现问题时只需更换一个二极管即可,检修的成本较低,缺点在于连接线路复杂;而点阵模块构成的方法却正好与之相反,模块构成省约了大量的连线,不过当一个LED出现问题时同在一个模块的所有LED都必须被更换。这就加大了维修的成本。两种方法相比较,结合实际情况,决定采取模块构成的方法来制作一个LED点阵显示屏。为了避免模块的缺点,选择点阵数较小的模块来减小出现这一问题的风险。点阵,本身是一个几何学名词,英文为:lattice。是格子框架,类似格子框架的意思。八十年代以来出现了组合型LED点阵显示器模块,以发光二极管为像素,它用高亮度发光二极管芯阵列组合后,环氧树脂和塑模封装而成。这种一体化封装的点阵LED模块,具有高亮度、引脚少、视角大、寿命长、耐湿、耐冷热、耐腐蚀等特点。LED点阵规模常见的有4×4、4×8、5×4、5×8、8×8、16×16等等。根据像素颜色的数目可分为单色、双基色、三基色等。像素颜色不同,所显示的文字、图像等内容的颜色也不同。单色点阵只能显示固定彩如红、绿、黄等单色,双基色和三基色点阵显示内容的颜色由像素内不同颜色发光二极管点亮组合方式决定,如红绿都亮时可显示黄色,如果按照脉冲方式控制二极管的点亮时间,则可实现256或更高级灰度显示,即可实现真彩色显。图2-1示出最常见的8×8单色LED点阵显示器。图2-18×8单色LED模块图2-28×8点阵LED外观及引脚图2.2显示系统的构成光伏LED屏幕系统设计(课程汇报)全文共13页,当前为第5页。LED显示屏主要包括发光二极管构成的点阵或像素阵列、驱动电路、控制系统和传输接口以及相应的应用软件构成,如图2-3所示。光伏LED屏幕系统设计(课程汇报)全文共13页,当前为第5页。图2-3显示系统的构成图2.3驱动电路LED显示屏驱动电路的主要作用是接受来自控制系统的数字信号,使LED阵列按要求点亮。(1)从采用的器件来分有常规型、专用型及功能型:

常规型驱动电路是采用通用的集成电路,如74HC154,74HC595,74LS374等作为数据装载的主要器件。这种设计,原理简单,价格便宜,且几乎不受器件来源的限制,是目前较为广泛的应用形式。专用型驱动电路,是国内一些有实力的LED显示屏制造厂家,通过先进的技术手段,研究开发出的适合自己产品的专用LED显示屏驱动IC。国外的许多IC制造商也在跟踪这个市场,纷纷推出一些新的驱动IC。这些专用型的驱动IC,有的比较简单,仅仅是提高了原来通用型驱动IC的集成度或驱动能力;有的则比较复杂,是根据自己的产品特点开发出来的。功能型驱动集成电路是在专用型驱动IC的基础上发展起来的。它不仅可以使显示屏的功能增强,而且还大大简化了系统设计的复杂程度,提高了LED显示屏的整体稳定性,是LED显示屏驱动电路的发展趋势。(2)从实现信息刷新的原理上分,LED显示屏驱动电路又分为扫描型及锁存型两种:扫描型是指显示屏4行、8行、16行等n行发光二极管共用一组列驱动寄存器,通过行驱动管的分时工作,使得每行LED

的点亮时间占总时间的1/n,只要整屏的刷新速率大于50HZ,利用人眼的视觉暂留效应,就可形成一幅完整的文字或画面。这种设计电路结构比较简单,使用元器件较少,成本较低,但由于是分时工作,使得每一行LED的点亮时间减少,使LED的亮度有所降低。这种驱动方式一般用于室内LED显示屏。光伏LED屏幕系统设计(课程汇报)全文共13页,当前为第6页。锁存型驱动是指显示屏上的每一个LED都对应于一个驱动电路,与扫描型不同,驱动寄存器无需时分工作,每个LED的亮度占空比接近100%。锁存型驱动如采用常规型的设计方法,则所用元器件较多,成本较高,如采用专用型或功能型IC设计,则成本将大幅度降低。一般室外LED显示屏大多用锁存型驱动。光伏LED屏幕系统设计(课程汇报)全文共13页,当前为第6页。2.4显示类型LED大屏幕显示可分为静态显示和动态扫描显示两种。静态显示每一个像素需要一套驱动电路,如果显示屏为N*M个像素,则需要N*M套驱动电路;动态扫描显示则采用多路复用技术,如果是P路复用,则每P个像素需一套驱动电路,N*M个像素仅需N*M/P套驱动电路。对动态扫描显示而言,P越大,所需驱动电路就越少,成本也就越低,引线也大大减少,更有利于高密度显示屏的制造。在实际使用的LED大屏幕显示器中,很少采用静态驱动。LED点阵显示模块的显示一般采用动态扫描驱动方式,每次最多只能LED点亮一行LED。处理器通过和驱动器的协同工作来完成对每一个LED点阵显示模块内每个LED显示点的亮、熄灭控制操作。光伏LED屏幕系统设计(课程汇报)全文共13页,当前为第7页。数据采集器从显示卡上获取显示数据并转化为帧控制器所需的数据格式。帧控制器从数据采集器上获得数字化的显示信号后,经过筛选、拾取后,将需要在LED

显示屏上显示的内容转换为扫描板所需要的数据格式。也就是说,帧控制器将计算机的标准接口获取控制信号,使用户能通过计算机的应用软件(LED

管理工具)完成对LED

屏的控制和调节,使帧控制器不但能适应各种不同规格的LED

屏,还能调节整屏的亮度和各色的全屏亮度功能,使LED

屏具有出色的节能效果。当主控计算机与LED

屏相距较远时,可利用帧控制器上的长线发送电路和长线接收卡完成帧控制器与扫描板之间的数据传输。行控器以串行级联的方式连接,从而完成数据在显示屏上某一方向的分配。各行控制器能从其级联总线上获取其所需的显示数据。由于在级联中加入了定位信息,所以行控制器无须外部设臵即可自动定位。因此在全系列的LED控制系统中,行控制器就成为一种通用的标准部件。显示单元模块是由LED

显示控制芯片及其外围电路组成。显示单元模块也是以串行级联方式来完成显示数据在LED

屏上的另一个方向上的数据分配。在扫描板控制下,显示单元模块重复显示的频率不低于120Hz,且控制输出引脚上输出的是一个带有非线性视觉纠正的具有256级灰度的以占空比形式表示的灰度值。光伏LED屏幕系统设计(课程汇报)全文共13页,当前为第7页。第三章硬件设计大多数的LED显示屏都在户外,所以对硬件的质量要求非常的高。为方便检修和维护硬件电路设计时常常采用模块化的设计方法。硬件的设计采用模块化设计,既要满足模块本身功能又要能够和整个系统兼容。如图3-1所示,根据显示系统的功能特点确定系统硬件由显示屏部分,控制部分组成。控制部分执行显示指令并将显示代码处理后控制显示部分的显示内容和显示方式。图3.1LED显示屏的硬件原理LED显示屏由控制系统、驱动系统和显示器件组成,其中微处理器控制系统是整个显示屏的核心。屏体的主要部分是显示点阵,还有行列驱动电路。系统显示点阵采用8X8单色显示单元。控制电路采用动态扫描驱动方式驱动LED器件,每两行一个控制器,控制完成整个显示电路的行列驱动。LED显示屏的系统硬件结构框图如图3-2所示:图3-2光伏LED屏幕系统设计(课程汇报)全文共13页,当前为第8页。LED大屏幕是由众多点阵模块排列而成。本系统由于横向点阵的列数较多,若采用列扫描方式来刷新点阵,有两点不足:一是点阵亮度受影响,二是整个屏幕的刷新频率随着列数的增加而降低。为了避免列扫描的不足,可以采用行扫描方式。这种扫描方式从每行模块的第一行LED顺次到该行模块的最后一行LED依次点亮模块的每一行。对于由8xS的模块构成的点阵来说,只要8次即可将每个模块刷新一次,也就是将屏幕刷新一次。LED显示屏作为一个单独的显示硬件,它能够将外来数据转换成图像显示出来。这个过程由硬件驱动程序来控制和实现。光伏LED屏幕系统设计(课程汇报)全文共13页,当前为第8页。显示过程是这样的:首先控制显示的单片机接收LED屏主控微机传来的数据(按照通信协议组织的数据);接着,主控程序将数据转换成屏幕显示的图形,存储到显存;再按照扫描顺序与屏幕对应关系,将显存内容转换成扫描内容;再将数据输出到控制单个LED模块的数据锁存器;最后扫描锁存器中的数据,刷新屏幕。3.2单片机STC89C52RC

单片机是宏晶科技推出的新一代高速/低功耗/超强抗干扰的单片机,指令代码完全兼容传统8051单片机,12时钟/机器周期和6时钟/机器周期可以任意选择,封装图和引脚示意图见图3-3,图3-4:图3-3STC89C52RC封装示意图主要特性如下:(1)增强型8051单片机,6分钟/机器周期和12时钟/机器周期可以任意选择,指令代码完全兼容传统8051.(2)工作电压:5.5V~3.3V(5V

单片机)/3.8V~2.0V(3V单片机)(3)工作频率范围:0~40MHz,相当于普通8051的0~80MHz,实际工作频率可达48MHz(4)用户应用程序空间为8K字节(5)片上集成512字节RAM(6)通用I/O(32个)复位后为,P1/P2/P3/P0是准双向口/弱上拉,P0口是漏极开路输出,作为总线扩展用时,不用加上拉电阻I/O用时,需加上拉电阻(7)ISP(在系统可编程)/IAP(在应用可编程),无需专用编程器,无需专用仿真器,可通过串口(RXD/P3.0,TXD/P3.1)直接下载用户程序数秒即可完成一片(8)具有EEPROM功能(9)具有看门狗功能光伏LED屏幕系统设计(课程汇报)全文共13页,当前为第9页。(10)共3个16位定时器/计数器。即定时器T0、T1、T2光伏LED屏幕系统设计(课程汇报)全文共13页,当前为第9页。(11)外部中断4路,下降沿中断或低电平触发中断电路,PowerDown模式可由外部中断低电平触发中断方式唤醒(12)通用异步串行口(UART),还可用定时器软件实现多个UART(13)工作温度范围:-40~+85℃业级)/0~75℃(商业级)(14)STC89C52RC单片机的工作模式、掉电模式:典型功耗0.1μA,可由外部中断唤醒,中断返回后,继续执行原程序空闲模式:典型功耗2mA典型功耗正常工作模式:典型功耗4Ma~7mA典型功耗掉电模式可由外部中断唤醒,适用于水表、气表等电池供电系统及便携设备STC89C52RC引脚功能说明VCC(40引脚):电源电压VSS(20引脚):接地图P0端口(P0.0~P0.7,39~32引脚):P0口是一个漏极开路的8位双向I/O口。作为输出端口,每个引脚能驱动8个TTL负载,对端口P0

写入“1”时,可以作为高阻抗输入。在访问外部程序和数据存储器时,在访问外部程序和数据存储器时,P0口也可以分时作为低8位地址总线和8位数据总线。此时,P0口无需接上拉电阻。在FlashROM

编在程时,P0端口接收指令字节端口指令;而在校验程序时,则输出指令字节验证时,要求外接上拉电阻。光伏LED屏幕系统设计(课程汇报)全文共13页,当前为第10页。P1端口(P1.0~P1.7,1~8引脚):P1口是一个带内部上拉电阻的8位双向I/O口。P1的输出缓冲器可驱动(吸收或者输出电流方式)4个TTL

输入。对端口写入1时,通过内部的上拉电阻把端口拉到高电位,这时可用作输入口。P1口作输入口使用时,因为有内部上拉电阻,那些被外部拉低的引脚会输出一个电流。光伏LED屏幕系统设计(课程汇报)全文共13页,当前为第10页。此外,P1.0和P1.1还可以作为定时器/计数器2的外部输入(P1.0/T2)和定时器/计数器2的触发输入(P1.1/T2EX),具体参见下表: 图3-5P1.0和P1.1引脚复用功能 在对FlashROM编程和程序校验时,P1接收低8位地址。P2端口(P2.0~P2.7,21~28引脚):P2口是一个带内部上拉电阻的8位双向I/O

端口。P2的输出缓冲器可以驱动(吸收或输出电流方式)4个TTL输入。对端口写入1时,通过内部的上拉电阻把端口拉到高电平,这时可用作输入口。P2作为输入口使用时,因为有内部的上拉电阻,那些被外部信号拉低的引脚会输出一个电流。在访问外部程序存储器和16位地址的外部数据存储器(如执行“MOVXDPTR”指令)时,P2送出高8位地址。在访问8位地址的外部数据存储器(如执行“MOVXR1”指令)时,P2口引脚上的内容(就是专用寄存器(SFR)区中的P2寄存器的内容),在整个访问期间不会改变。在对FlashROM编程和程序校验期间,P2也接收高位地址和一些控制信号。P3端口(P3.0~P3.7,10~17引脚):P3

是一个带内部上拉电阻的8位双向I/O端口。P3的输出缓冲器可驱动(吸收或输出电流方式)4个TTL入1时,通过内部的上拉电阻把端口拉到高电位,这时可用作输入口。P3做输入口使用时,因为有内部的上拉电阻,那些被外部信号拉低的引脚会输入一个电流。在对FlashROM编程或程序校验时,P3还接收一些控制信号。P3口除作为一般I/O口外,还有其他一些复用功能。RST(9引脚):复位输入。当输入连续两个机器周期以上高电平时为有效,用来完成单片机的复位初始化操作。看门狗计时完成RST引脚输出96个晶振周期的高电平。特殊寄存器AUXR(地址8EH)上的DISRTO位可以使此功能无效。DISRTO

默认状态下,复位高电平有效。ALE/

RO(30引脚)地址锁存控制信号:(ALE)是访问外部程序存储器时,锁存低8位地址的输出脉冲。在Flash编程时,此引脚(ROG)也用作编程输入脉冲。在一般情况下,ALE以晶振六分之一的固定频率输出脉冲,可用来作为外部定时器或时钟使用。然而,特别强调在每次访问外部数据存储器时,ALE

脉冲将会跳过。如果需要,通过将地址位8EH的SFR

的第0位置“1”,ALE

操作将无效。光伏LED屏幕系统设计(课程汇报)全文共13页,当前为第11页。这一位置“1”,ALE仅在执行MOVX或MOV指令时有效。否则,ALE将被微弱拉高。这个ALE使能标志位(地址位8EH的SFR

的第0位)的设置对微控制器处于外部执行模式下无效。外部程序存储器选通信号(SEN)是外部程序存储器选SEN(29引脚)通信号。当AT89C51RC从外部程序存储器执行外部代码时,SEN在每个机器周期被激活两次,而访问外部数据存储器时,SEN将不被激活A/VPP(31

引脚)访问外部程序存储器控制信号为使能从0000H到FFFFH的外部程序存储器读取指令,A必须接GND。注意加密方式1时,A将内部锁定位RESET。为了执行内部程序指令,A应接VCC。在Flash

编程期间,A也接收12伏VPP电压。XTAL1(19引脚):振荡器反相放大器和内部时钟发生电路的输入端。XTAL2(18引脚):振荡器反相放大器的输入端。光伏LED屏幕系统设计(课程汇报)全文共13页,当前为第11页。光伏LED屏幕系统设计(课程汇报)全文共13页,当前为第12页。

结论光伏LED屏幕系统设计(课程汇报)全文共13页,当前为第1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论