版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
九年级数学(下)第三章圆3.2圆的对称性(1)垂径定理南京市方国平请观察下列三个银行标志有何共同点??复习提问:1、什么是轴对称图形?我们在直线形中学过哪些轴对称图形?如果一个图形沿一条直线对折,直线两旁的部分能够互相重合,那么这个图形叫轴对称图形。如线段、角、等腰三角形、矩形、菱形、等腰梯形、正方形2、我们所学的圆是不是轴对称图形呢?.圆的对称性圆是轴对称图形吗?
想一想P881
如果是,它的对称轴是什么?你能找到多少条对称轴?●O你是用什么方法解决上述问题的?圆是中心对称图形吗?
如果是,它的对称中心是什么?你能找到多少个对称中心?你又是用什么方法解决这个问题的?圆的对称性圆是轴对称图形.
想一想P882
圆的对称轴是任意一条经过圆心的直线,它有无数条对称轴.●O可利用折叠的方法即可解决上述问题.圆也是中心对称图形.它的对称中心就是圆心.用旋转的方法即可解决这个问题.圆的相关概念圆上任意两点间的部分叫做圆弧,简称弧.直径将圆分成两部分,每一部分都叫做半圆(如弧ABC).
读一读P883连接圆上任意两点间的线段叫做弦(如弦AB).●O经过圆心的弦叫做直径(如直径AC).AB⌒以A,B两点为端点的弧.记作,读作“弧AB”.AB⌒小于半圆的弧叫做劣弧,如记作(用两个字母).⌒ACB大于半圆的弧叫做优弧,如记作(用三个字母).ABC⌒D③AM=BM,垂径定理AB是⊙O的一条弦.你能发现图中有哪些等量关系?与同伴说说你的想法和理由.
做一做P894作直径CD,使CD⊥AB,垂足为M.●O下图是轴对称图形吗?如果是,其对称轴是什么?小明发现图中有:ABCDM└
由①CD是直径②CD⊥AB可推得⌒⌒④AC=BC,⌒⌒⑤AD=BD.垂径定理如图,小明的理由是:连接OA,OB,
做一做P905●OABCDM└则OA=OB.在Rt△OAM和Rt△OBM中,∵OA=OB,OM=OM,∴Rt△OAM≌Rt△OBM.∴AM=BM.∴点A和点B关于CD对称.∵⊙O关于直径CD对称,∴当圆沿着直径CD对折时,点A与点B重合,⌒⌒AC和BC重合,⌒⌒AD和BD重合.⌒⌒∴AC=BC,⌒⌒
AD=BD.垂径定理三种语言定理垂直于弦的直径平分弦,并且平分弦所的两条弧.老师提示:
垂径定理是圆中一个重要的结论,三种语言要相互转化,形成整体,才能运用自如.
想一想P906●OABCDM└CD⊥AB,如图∵CD是直径,∴AM=BM,⌒⌒AC=BC,⌒⌒AD=BD.条件CD为直径CD⊥ABCD平分弧ADBCD平分弦ABCD平分弧ACB结论②CD⊥AB,垂径定理的逆定理AB是⊙O的一条弦,且AM=BM.
你能发现图中有哪些等量关系?与同伴说说你的想法和理由.
做一做P917过点M作直径CD.●O下图是轴对称图形吗?如果是,其对称轴是什么?
小明发现图中有:CD
由①CD是直径③AM=BM可推得⌒⌒④AC=BC,⌒⌒⑤AD=BD.●MAB┗平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.讨论(1)过圆心(2)垂直于弦(3)平分弦(4)平分弦所对优弧(5)平分弦所对的劣弧(3)(1)(2)(4)(5)(2)(3)(1)(4)(5)(1)(4)(3)(2)(5)(1)(5)(3)(4)(2)(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧命题(1):平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧已知:CD是直径,AB是弦,并且CD平分AB求证:CD⊥AB,AD=BD,AC=BC⌒⌒⌒⌒命题(2):弦的垂直平分线经过圆心,并且平分弦所对的两条弧已知:AB是弦,CD平分AB,CD⊥AB,求证:CD是直径,
AD=BD,AC=BC⌒⌒⌒⌒命题(3):平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧已知:CD是直径,AB是弦,并且AD=BD(AC=BC)求证:CD平分AB,AC=BC(AD=BD)CD⊥AB⌒⌒⌒⌒⌒⌒⌒⌒.OAEBDC垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。推论(1)(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧垂径定理记忆你可以写出相应的命题吗?相信自己是最棒的!垂径定理的逆定理
如图,根据垂径定理与推论可知对于一个圆和一条直线来说。如果在下列五个条件中:只要具备其中两个条件,就可推出其余三个结论.
想一想P918●OABCDM└①CD是直径,③AM=BM,②CD⊥AB,⌒⌒④AC=BC,⌒⌒⑤AD=BD.注意
想一想P919●OABCDM└条件结论定理及逆定理①②③④⑤①③②④⑤①④②③⑤①⑤②③④②③①④⑤②④①③⑤②⑤①③④③④①②⑤③⑤①②④④⑤①②③垂直于弦的直径平分弦,并且平分弦所的两条弧.平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.弦的垂直平分线经过圆心,并且平分这条弦所对的两条弧.垂直于弦并且平分弦所对的一条弧的直线经过圆心,并且平分弦和所对的另一条弧.平分弦并且平分弦所对的一条弧的直线经过圆心,垂直于弦,并且平分弦所对的另一条弧.平分弦所对的两条弧的直线经过圆心,并且垂直平分弦.垂径定理及逆定理判断(1)垂直于弦的直线平分弦,并且平分弦所对的弧…………..()(2)弦所对的两弧中点的连线,垂直于弦,并且经过圆心……..()(3)圆的不与直径垂直的弦必不被这条直径平分…………...()(4)平分弦的直径垂直于弦,并且平分弦所对的两条弧………()(5)圆内两条非直径的弦不能互相平分()×√××√挑战自我(6)平分弦的直径,平分这条弦所对的弧()(7)平分弦的直线,必定过圆心()(8)一条直线平分弦(这条弦不是直径),那么这条直线垂直这条弦()ABCDO(1)ABCDO(2)ABCDO(3)(9)弦的垂直平分线一定是圆的直径()(10)平分弧的直线,平分这条弧所对的弦()(11)弦垂直于直径,这条直径就被弦平分()ABCO(4)ABCDO(5)ABCDO(6)E挑战自我垂径定理的推论2
如果圆的两条弦互相平行,那么这两条弦所夹的弧相等吗?老师提示:这两条弦在圆中位置有两种情况:随堂练习P9210●OABCD1.两条弦在圆心的同侧●OABCD2.两条弦在圆心的两侧垂径定理的推论2
圆的两条平行弦所夹的弧相等.例题解析例1:如图,已知在圆O中,弦AB的长为8㎝,圆心O到AB的距离为3㎝,求圆O的半径。练习1:在半径为50㎜的圆O中,有长50㎜的弦AB,计算:⑴点O与AB的距离;⑵∠AOB的度数。E练习2:在圆O中,直径CE⊥AB于
D,OD=4㎝,弦AC=㎝,求圆O的半径。
反思:在⊙O中,若⊙O的半径r、圆心到弦的距离d、弦长a中,任意知道两个量,可根据
定理求出第三个量:CDBAO例2:如图,圆O的弦AB=8㎝,
DC=2㎝,直径CE⊥AB于D,求半径OC的长。垂径例3:如图,已知圆O的直径AB与弦CD相交于G,AE⊥CD于E,
BF⊥CD于F,且圆O的半径为
10㎝,CD=16㎝,求AE-BF的长。练习3:如图,CD为圆O的直径,弦
AB交CD于E,∠CEB=30°,
DE=9㎝,CE=3㎝,求弦AB的长。例4已知:如图,在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C,D两点。求证:AC=BD。证明:过O作OE⊥AB,垂足为E,则AE=BE,CE=DE。
AE-CE=BE-DE。所以,AC=BDE.ACDBO试一试P9311挑战自我画一画
如图,M为⊙O内的一点,利用尺规作一条弦AB,使AB过点M.并且AM=BM.●O●M试一试P9312挑战自我填一填1、判断:⑴垂直于弦的直线平分这条弦,并且平分弦所对的两条弧.()⑵平分弦所对的一条弧的直径一定平分这条弦所对的另一条弧.()⑶经过弦的中点的直径一定垂直于弦.( )⑷圆的两条弦所夹的弧相等,则这两条弦平行.()⑸弦的垂直平分线一定平分这条弦所对的弧.()√√试一试P9313挑战自我找一找2.已知:如图,⊙O中,弦AB∥CD,AB<CD,直径MN⊥AB,垂足为E,交弦CD于点F.图中相等的线段有:
.图中相等的劣弧有:
.试一试P9314挑战自我算一算3、已知:如图,⊙O中,AB为弦,C为AB的中点,OC交AB于D,AB=6cm,CD=1cm.求⊙O的半径OA.⌒试一试P9315挑战自我试一试4.如图,圆O与矩形ABCD交于E、F、G、H,EF=10,HG=6,AH=4.求BE的长.·ABCD0EFGH课堂小结1.本节课我们主要学习了圆的轴对称性和垂径定理垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.
2.垂径定理的证明,是通过“实验—观察—猜想—证明”实现的,体现了实践的观点、运动变化的观点和先猜想后证明的观点,定理的引入还应用了从特殊到一般的思想方法.
3.有关弦的问题,常常需要过圆心作弦的垂线段,这是一条非常重要的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 虚拟科研协同工作责任书6篇
- 持续推进节能减排效果承诺书范文6篇
- 公司品牌形象塑造维护责任书3篇范文
- 高端设备品质承诺书5篇
- 列车封堵作业制度规范
- 酒店保安部管理制度规范
- 规范实验室安全管理制度
- 怎样规范驾校管理制度
- 医院死亡病例制度规范
- 老年人疫苗规范管理制度
- 大数据安全技术与管理
- 2026年中小学校长校园安全管理培训考试题及答案
- 2025年山东建筑大学思想道德修养与法律基础期末考试模拟题必考题
- 江西省赣州地区2023-2024学年七年级上学期期末英语试(含答案)
- 2025年香港沪江维多利亚笔试及答案
- 述职报告中医
- 患者身份识别管理标准
- 松下Feeder维护保养教材
- 汽车融资贷款合同范本
- 雨课堂学堂在线学堂云《高分子与阻燃材料成型加工( 理大)》单元测试考核答案
- 血透室护士长5分钟述职报告
评论
0/150
提交评论