材料力学课程描述_第1页
材料力学课程描述_第2页
材料力学课程描述_第3页
材料力学课程描述_第4页
材料力学课程描述_第5页
已阅读5页,还剩36页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

PAGEPAGE1材料力学课程描述第一篇:材料力学课程描述材料力学课程描述学时:88学分:5.5课程性质:材料力学是变形固体力学入门的学科基础课,用以培养学生在工程设计中有关力学方面的设计计算能力,本课程主要研究工程结构中构件的承载能力问题,通过揭示构件的强度、刚度和稳定性问题的基本概念及必要的基础知识,培养学生解决问题的能力;以理论分析为基础,培养学生的实验动手能力;发挥其它课程不可替代的综合素质教育作用。课程任务:其主要任务是培养学生:1.树立正确的设计思想,理论联系实际,解决好经济与安全的矛盾,具备创新精;2.全面系统地了解构件的受力变形、破坏的规律;3.掌握有关构件设计计算的基本概念、基本理论、基本方法及其在工程的应用;4.能将一般构件抽象出力学简图,进行外力分析、内力分析、应力分析、应变分析、应力和应变分析;5.掌握材料的力学性能的原理和方法,具有进行实验研究的初步能力;6.在满足强度、刚度、稳定性的前提下,以最经济的代价,为构件选择合适的形状设计合理的界面形状和尺寸,为设计提供计算依据;7.了解材料力学的新理论,新方法及发展趋向;课程目的:材料力学课程是高等工科院校中机械类专业一门主干课程,是机械类硕士研究生入学考试的一门专业基础课。在教学过程中要综合运用先修课程中所学到的有关知识与技能,结合各种实践教学环节,进行机械工程技术人员所需的基本训练,为学生进一步学习有关专业课程和有目的从事机械设计工作打下基础,因此材料力学课程机械类专业的教学计划中占有重要的地位和作用。二、教学基本要求:(一)课程的基本要求及提高要求:基本要求:1.对材料力学的基本概念和基本分析方法有明确的认识。2.能熟练地做出杆件在基本变形下的内力图,进行应力和位移、强度和刚度计算。3.掌握应力状态理论,掌握组合变形下杆件的强度计算。4.掌握简单静不定问题的求解方法。5.了解能量法的基本原理,掌握一种计算位移的能量方法。6.了解压杆的稳定性概念,会计算轴向受压杆的临界力与临界应力。7.了解低碳钢和灰口铁的基本力学性能及其测试方法。8.掌握电测实验应力分析的基本原理和方法。提高要求:1.薄壁杆件扭转,弯曲中心,莫尔强度理论;2.功互等定理、位移互等定理和虚功原理;3.拉压杆的弹塑性分析;4.综合性、设计性实验。(二)实验要求:材料力学课程是一门实践性,设计性很强的技术基础课,实验教学是培养学生创新精神和实践能力的重要教学环节。共安排6次实验。1.低碳钢和铸铁的拉伸实验(2学时);2.低碳钢和铸铁的压缩实验,测E实验(2学时);3.低碳钢和铸铁的扭转实验,测G实验(2学时);4.电测实验I(2学时);5.电测实验II(2学时);6.光测实验,冲击,疲劳,动荷实验(2学时)。以上实验共计12学时,课内占8学时,课外占4学时。力学实验中心为开放实验室,开课后要预约实验。材料力学实验有《材料力学实验指导书》,要求学生上实验课之前要预习《材料力学实验指导书》,并写出预习报告。实验时每组人数2—3人,每位任课教师要指导一个实验教学班的实验。实验报告要用学校统一印制的实验报告用纸,教师要认真批阅每份实验报告,评出成绩并做好记录。三、各章节内容及学时分配:第一章绪论教学目的与要求1.了解构件的强度、刚度和稳定性的概念。2.明确材料力学的课程的地位和任务。3.理解变形固体的基本假设、条件及其意义。4.明确内力的概念初步掌握用截面法计算内力的方法。5.建立正应力、切应力、线应变、切应变的基本概念。6.了解杆件四种基本变形的受力的特点和变形特点。教学内容材料力学的任务、同相关学科的关系,变形固体的基本假设、主要研究对象、研究方法、截面法、内力、应力、和应变的概念,基本变形。第二章轴向拉伸和压缩教学目的与要求1.了解轴向拉、压的受力特点和变形特点。2.熟练掌握轴力计算和轴力图的绘制方法。3.了解轴向拉、压时横截面上正应力公式的推倒过程和应用条件。4.了解轴向拉、压时斜截面上应力变化规律,特别是最大正应力和最大切应变的大小和作用面5.掌握轴向拉、压时,塑性和脆性材料的力学性质,并能分析解释其破坏原因。6.掌握工作应力、极限应力许用应力与安全系数的概念。7.熟练掌握轴向拉压杆的强度条件和三种强度问题的计算方法。8.明确弹性模量E波松比μ和抗拉、压刚度EA的物理意义,熟练运用胡克定律计算拉压杆变形。9.建立轴向拉、压时弹性变形能的概念和计算方法。10.熟练掌握一次拉、压静不定的解法(包括温度应变和装配应力)。11.了解应力集中的概念。教学内容轴力与轴力图,直杆横截面及斜截面的应力,圣维南原理,应力集中的概念。材料拉伸及压缩时的力学性能,应力-应变曲线。拉压杆强度条件,安全因数及许用应力的确定。第三章扭转和剪切教学目的与要求1.了解圆轴扭转时的受力特点和变形特点。2.能够根据轴的传递功率和转速计算外力偶矩。3.熟练掌握扭矩的符号规定和扭矩图的绘制。4.掌握切应力互等定理和剪切胡克定律。5.了解圆轴扭转时横截面上的切应力和扭转变形公式的推导过程和应力分部规律。6.了解圆轴扭转时斜截面上的应力变化规律,特别是最大正应力和最大切应力的大小和作用面。7.了解塑性和脆性材料的扭转实验。8.熟练掌握圆轴扭转时变形和刚度条件。9.熟练掌握建立轴向拉、压时弹性变形能的概念和计算方法。10.掌握剪切和挤压的实用计算。11.了解非圆截面杆和薄壁杆件的扭转。教学内容扭矩及扭矩图,切应力互等定理,剪切胡克定律,圆轴扭转的应力与变形,扭转强度及刚度条件,非圆截面杆扭转的概念,密圈圆柱螺旋弹簧的应力和变形简介,剪切及挤压的概念和实用计算。第四章弯曲内力教学目的与要求1.明确平面弯曲的概念。2.熟练掌握建立剪力方程、弯曲方程和绘制剪力图、弯矩图的方法。3.掌握平面刚架的内力计算和内力图的绘制方法。4.熟练运用载荷集中、剪力和弯矩之间的微分关系绘制或校核剪力图和弯矩图的方法。5.掌握带梁间铰静定梁的内力图的绘制。6.了解用叠加原理作弯矩图的基本方法。7.了解平面曲杆的弯曲内力计算和内力方程的建立方法。教学内容平面弯曲的内力,剪力、弯矩方程,剪力、弯矩图,利用微分关系画梁的剪力、弯矩图。第五章弯曲强度教学目的与要求1.明确纯弯曲和横力弯曲的概念。2.了解梁纯弯曲时横截面上的正应力公式的推导方法和正应力分布规律。3.熟练掌握弯曲正应力的计算和弯曲正应力的强度条件及其应用。4.理解矩形截面梁衡截面上弯曲切应力公式的推导过程及切应力的分部规律。5.掌握常见截面梁衡截面上切应力的计算和弯曲切应力强度条件。6.建立弯曲中心的概念,横力弯曲时,产生平面弯曲的条件。7.了解提高粱弯曲强度的主要措施。教学内容弯曲正应力公式,弯曲切应力,弯曲强度条件,薄壁截面梁的弯曲切应力,弯曲中心的概念,提高弯曲强度的措施。第六章弯曲变形教学目的与要求1.明确挠曲线、挠度和转角的概念。2.理解求解弯曲变形的挠曲线近似非分方程的建立过程及刚度条件。3.掌握用积分法求弯曲变形及确定积分常数的边界条件和连续条件。4.掌握用叠加法求弯曲变形。5.了解提高粱弯曲刚度的主要措施。教学内容挠曲线及其近似微分方程,积分法和叠加法求梁的位移,梁的刚度校核,提高梁弯曲刚度的措施。第七章应力及应变分析强的计算教学目的与要求1.明确什么叫一点处的应力状态?为什么要研究一点处的应力状态?2.明确主平面、主应力和应力状态分析。3.熟练掌握各种组合变形的危险点(或指定点)处原始单元体的截取及各面上的正应力。4.熟练掌握二向应力状态分析的解析罚和图解法及单元体与应力圆之间的一一对应关系。5.了解三向应力圆的画法,熟练掌握单元体内的最大切应力的计算。6.了解平面英里状态下的应便分析。7.掌握广义胡克定律及应用。8.了解复杂应力状态下的比能、体积改变比能和形状改变比能。9.了解什么是强度理论?为什么要建立强度理论?建立强的理论的依据是什么?10.熟练掌握四种常用强度理论进行强度计算的方法及强度理论的选择。教学内容应力状态的概念,平面应力状态下的应力分析和应变分析的解析法及图解法,三向应力状态的简介,广义胡克定律,体积应变,三向应力状态下应变能、体积改变能、畸变能的概念。第八章组合变形构件的强度计算教学目的与要求1.了解组合变形机构的强度计算的基本方法和步骤。2.掌握斜弯曲和拉弯曲组合变形构件的应力和强度计算。3.熟练掌握圆轴扭转与其他变形的组合时的应力和强度计算。教学内容强度理论的概念,破坏形式的分析,脆性断裂和塑性屈服,四个经典强度理论。组合变形的类型,解决的方法和步骤,组合变形下杆件的强度计算,截面核心的简介(土建类)。第九章实验应力分析教学目的与要求1.明确实验应力的分析的目的和电测法的基本原理。为什么要进行温度补偿?2.熟练掌握测量电桥的接法及其应用。3.掌握二向应力的状态主方向已知时的应力测定。4.了解二向应力的状态主方向未知时的应力测定。5.了解电测法的主要优缺点。教学内容电测试验应力分析的基本原理和方法,应力测定,光测法的基本原理。第十章能量法教学目的与要求1.掌握轴向拉压、圆轴扭转、平面弯曲和组合变形时的杆件变形能的计算,了解变形能的特点。2.掌握计算位移的莫尔积分法。3.熟练掌握一种计算位移地能量法。如计算莫尔积分的图形互乘法4.了解虚功和虚位移互等定理及其应用。教学内容杆件应变能计算,卡氏定理,莫尔定理,用能量法计算位移。第十一章静不定结构教学目的与要求1.明确静不定机构的概念,掌握判定静不定次数的方法。2.掌握用力法解静不定的基本步骤。3.熟练掌握解一次静不定机构的变形比较法。4.理解力法正则方程的力学意义和建立过程,并用力法正则方程解静不定结构。5.掌握利用机构在几何物理和载荷方面的对称性和反对称性,来简化静不定次数的方法。教学内容用力法解简单静不定的基本步骤,正则方程,对称性在解静不定问题中的应用。第十二章动载荷教学目的与要求1.掌握匀加速直线运动杆件和匀速转动圆环的动应力计算。2.理解用能量法求解自由落体和水平冲击动载荷系数Kd公式的推导过程及动荷系数的物理意义。3.熟练掌握自由落体和水平冲击时的动载荷、动应力和动变形的计算。4.了解冲击实验和提高构件抗冲击能力的措施。教学内容构件作等加速运动和匀速转动的应力计算,冲击时的应力和变形计算,动、静异同动应力,动变形的计算。第十三章交变应力教学目的与要求1.了解疲劳破坏的特点和原因。2.掌握描述交变应力的参数计算。3.明确材料的持久极限及其测定。4.了解影响构件持久极限的主要原因。5.掌握对称循环下构件的疲劳强度计算。6.理解非对称循环时的材料持久极限曲线及其简化折线。7.了解非对称循环时,构件的持久极限简化折线及其构件的疲劳强度计算。8.了解在弯扭组合交变应力下构件的疲劳强度计算。9.了解提高构件疲劳强度的主要措施。教学内容疲劳破坏的概念,S-N曲线及材料的疲劳极限,影响构件疲劳极限的主要因素,有限寿命简介,提高构件疲劳强度的措施,交变应力与疲劳破坏,持久极限及其影响因素。第十四章压杆稳定教学目的与要求1.明确压杆稳定和临界力的概念。2.理解两端铰支细长压杆临界力计算公式推导过程。3.了解长度系数的力学意义,掌握四种常见约束下细长压杆临界力的计算。4.明确压杆的柔度和欧拉公式的适用范围。掌握临界应力总图5.掌握压杆的稳定校核。6.了解提高压杆稳定的措施。教学内容压杆稳定的概念,细长压杆临界载荷的欧拉公式,临界应力、经验公式、临界应力总图,压杆的稳定校核,安全因数法,折减系数法(土木建筑类),提高稳定性的措施。附录A平面图形的几何性质教学目的与要求1.掌握静矩和形心的概念、性质和计算。2.掌握惯性矩、惯性半径、极惯性矩和惯性积的概念、性质和计算。3.掌握平行移轴公式及组合图形惯性矩的计算。4.了解转轴公式,主惯性轴、主惯性矩、形心主轴和形心主惯性矩的概念、性质和计算。教学内容静矩、形心、惯性矩、惯性积、惯性半径、积惯性矩、主轴、形心主惯矩、截面二次矩、平行移轴公式、转轴公式。四、实验:1.实验目的与任务大量与《材料力学》相关的产品和科研成果作为《材料力学实验》实践教学的内容,通过参观图片实物、实验扩展以及学生自己观察、分析和动手实践达到实验的目的。实验课采用开放实验教学方式,实验前学生必须提前到实验室预约本课程12学时实验要求学生自己动手做,2学时实验为扩展性实验。要求学生在实验前预习指导书,指导教师概述实验的原理和方法及仪器的使用等,并具体操作,由学生独立完成5次实验报告。2.实验教学基本要求(1)材料的机械性能测试:材料的各项强项指标,如屈服强度、强度极限、持久极限等。测量材料的弹性性能,如弹性极限、弹性模量等,认识低碳钢和铸铁的基本力学性能,了解其测试方法,对于常用材料的基本力学性能及测试方法有初步认识;(2)验证性实验:材料力学的一些理论是以假设为基础而导出的,例如杆件弯曲理论就以平面假设为基础。用实验验证这些理论的正确性&使用范围,更可加深对理论的认识和理解。对剪变模量测试的理论误差要求在10%以内,对静态电测应力值要求误差在10%以内,对所有的设备仪器的精度示值要求在规定范围内;(3)应力分析实验:在某些情况下,例如因构件几何形状不规则或应力复杂等,应力计算并无适用的理论。这时,用诸如电测、光弹性等实验应力分析的方法直接测定构件的应力,便成为有效的方法。对经过较大简化后得到的理论计算或数值计算,其结果的可靠性更有赖于实验应力分析的验证。重点掌握静态测试技术,掌握电测实验的基本原理和方法;(4)具有熟练整理实验数据、分析误差、独立完成实验报告的能力;第二篇:岩石力学课程介绍《岩石力学》课程介绍该课程为学科基础课程,适应专业有土木工程专业、水利水电工程专业;课程性质为选修课程主要学习岩体的基本物理力学性质及测定方法,工程岩体在外荷作用下内应力的变化和表现出的性质及应力状态、应变状态以及对工程的影响,并用以解决工程问题和对工程进行可靠性评价。本课程研究内容:介绍基本原理和试验方法以及与工程建设密切相关的岩基、岩坡、地下洞室等问题,着重于基础知识。学习该课程的目的:掌握工程岩体在外荷载作用下的内应力的变化和表现出的各种性质以及应力状态、应变状态对工程的影响,掌握岩体的基本力学性质及其测定方法,并用以解决工程问题和对工程进行可靠性评价。学习本课程后应具备的能力:1、能够运用岩石的物理性质和岩体结构状态对岩石(体)分类,估算无支护条件下的洞壁最长稳定时间。2、能够进行岩体力学性质的室内外实验和资料分析。3、对岩体应力状态、变形状态和破坏条件进行全面分析和评价。4、能够计算山岩压力,评价岩体稳定性,并进行喷锚支护设计。5、掌握有压隧洞围岩和衬砌的应力计算和有压隧洞围岩最小覆盖层厚度计算。6、初步掌握岩坡的加固方法。学分与学时学分为2分.学时为32学时。建议先修课程土力学与地基基础、工程地质和水文地质、材料力学、弹性力学。推荐教材或参考书目推荐教材:(1)《岩石力学》(第三版)第11次印刷徐志英主编.中国水利水电出版社.1993年参考书目:(2)《岩体力学》(第一版)第1次印刷.沈明荣、陈建峰主编.同济大学出版社.20XX年。(3)《岩体力学》(第一版)第1次印刷罗固原等编.重庆大学出版社.20XX年。第三篇:建筑力学课程介绍建筑力学课程介绍《建筑力学》是广播电视大学建筑施工与管理专业学生必修的技术基础课。它以高等数学、物理学为基础,通过本课程的学习,培养学生具有初步对建筑工程问题的简化能力,一定的力学分析与计算能力,是学习有关后继课程和从事专业技术工作的基础。通过学习本课程,培养学生具有一般结构受力分析的基本能力;熟练掌握静力学的基本知识;掌握静定结构的內力和位移计算;掌握基本杆件的强度、刚度、稳定性计算;基本掌握简单超静定结构的內力的计算;通过观察,了解力学实验的基本过程。课程的教学基本要求(一)知识要求本课程在教学实施过程中应从本专业的培养目标、特点及学生的实际情况出发,对基本力学原理和理论的讲授以实际应用和后续专业课程的要求为目的,教学內容以必需够用为度,讲授结构的计算简图、结构的几何组成、静力学基础等基本知识,重点讲授常用杆件及静定结构的內力分析和计算、內力图的绘制方法、应力分析和强度计算、位移分析和刚度计算,讲授杆件的稳定性计算、简单超静定结构的內力计算、內力图的绘制方法。(二)能力要求1.了解结构的计算简图、几何组成等基础知识;2.熟练掌握静力学的基本知识和运算;3.掌握静定结构的內力和位移计算;4.掌握基本杆件的强度、刚度计算;5.了解杆件稳定性计算的基本概念;6.基本掌握简单超静定结构的內力的计算;7.了解力学实验的基本过程。本课程的重点是:静力学基本知识、轴向拉伸和压缩、梁的弯曲、静定结构的內力分析及简单超静定结构解法等內容。要求学生能灵活运用物体的平衡条件,熟练掌握截面法等力学基本方法,发挥开放学生自学优势,充分利用多种媒体资源。本着教师精讲、学生多练的原则,力求多做课外习题,对重点和难点內容加深理解,对计算方法逐步巩固。本课程为5学分,课內学时90,其中:实验4学时。开设一学期。本课程的主要教学内容有:绪论,静力学基本知识,静定结构基本知识,静定结构內力计算,杆件的强度、刚度和稳定性计算,静定结构位移计算,超静定结构內力计算。第四篇:理论力学课程总结理论力学课程总结一·用一条你认为的主线来贯穿总结本课程的学习内容理论力学是一门研究物体机械运动的一般规律的科学。经过一学期的学习,对理论力学有了初步大体的认识,笔者试图通过“运动”这条主线对课程进行梳理与总结:1·首先要强调的是这里说的运动是指速度远小于光速的宏观物体的机械运动,他以牛顿力学的基本定律为基础,属于古典力学范畴。理论力学所研究的是这种运动中最一般、最普遍的规律,是各门力学分支的基础。理论力学的内容主要包括:静力学、运动学、动力学。但笔者认为可以通过对物体运动的分析来将其串联。2·运动学:经典力学中运动是指运动物体空间位置的变化。那么如何描述这种变化呢?这里就涉及到运动学的知识。物体的运动和静止是相对的,运动是绝对的,静止是相对的。选取的参考体不同,那么物体相对于不同参考体的运动也不同。故描述任何运动都需要指明参考体。现只从几何的角度来研究物体的运动,同时又根据研究对象的不同分为质点运动与刚体运动,根据运动的复杂程度分为简单运动与合成运动(刚体的平面运动),根据描述方式的不同分为轨迹、速度、加速度的讨论。质点的运动:质点运动的可以通过矢量法、直角坐标系法、自然法进行描述,三者相互联系又各有侧重和优势。点的复合运动与点的运动学方法作比较,可知前者主要研究瞬时的速度与加速度,后者通过数学知识建立动点绝对方程,可以得到持续运动中的各个运动量。重点总结点的合成运动。点的合成运动有三个对象:动点,定参考系,动参考系。点的速度合成:vavevraaaearaC点的加速度合成:科氏加速度:aC2ωevr,体现了动坐标系转动时,相对运动与牵连运动的相互影响。其中,要强调的是瞬时牵连点的概念:任一瞬时,动系上与动点M重合的点M'即为此瞬时动点M的牵连点。而瞬时牵连点的速度与加速度即为动点的牵连速度与加速度,这个概念可以很好的判断e与ae。通过做过的题目总结可知,动点与动系的选择往往是解题的关键,而易于辨析的相对轨迹是选择动点与动系的重要原则,用充分利用约束条件使得相对轨迹的速度与加速度易于求解。刚体的平面运动:刚体的运动可分为刚体的基本运动(平动与定轴转动)和刚体的平面运动。刚体的平面运动可看做是多种基本运动的合成。在分析刚体速度与加速度时,最重要的方法为基点法。速度分析时,有两个重要的定理,速度投影定理与瞬心法。刚体各点速度分析:vvAvB+vAB,vABrBA刚体各点加速度分析:aAaaABaBnAB2anr,aBABABAαrBA刚体是在受力后其大小、形状和内部各点相对位置都保持不变的理想化模型,基于这个原理,有速度投影定理:(vB)AB(vA)AB刚体是理想化的质点系,故刚体的运动与点的运动既有联系,也vAB可看作相对速度,有区别。上面公式中的vA为基点的绝对速度,vA即为绝对速度。但需注意的是,刚体的基点与动点是在一个刚体上,而点的复合运动中动系的选择是任意的。3·静力学:力是物体间的相互作用,也是物体运动状态发生改变或是形变的原因。当物体静止时,必受平衡力。由于静止是相对的,故可看做是一种特殊的运动形式。这种运动下分析平衡力的问题为静力学问题。静力学主要研究受力物体平衡时作用力所应满足条件,受力分析的方法,以及力系简化方法。而解决问题的关键是通过受力分析建立有效的力系平衡方程,进而求解受力或力矩。受力分析首先要判断力的类型,静力学中,主要有主动力与约束反力,主动较容易判断,但不同的约束产生不同的约束反力,通过分析约束的类型及性质,判断约束反力和约束反力偶。(e)e(e)FF0MrF0Ri任意力系平衡方程:i,oi其中,平面力系可列三个独立方程,空间力系可列六个独立方程,分别可以解三个和六个未知量,为静力学一般问题。而还需强调的是特殊的结构——平面简单桁架,特殊的约束反力——摩擦力。简单桁架中每根杆均为二力杆件,每个节点都受一个平面汇交力系的作用。这些特殊性质是球节杆件受力的基础,主要运用节点法(以节点为研究对象,由已知力求出杆件内力)和截面法(选取适当截面,把部分桁杆截开,再考虑任意部分的平衡,求出被截桁杆的内力)。摩擦是一种极其复杂的力学现象,它的方向与用物体相对运动或是相对运动的趋势相反,大小也往往是一个范围,故需要将力与运动结合分析,这也是笔者下一部分要讨论的重点。4·动力学:动力学主要研究受力物体的运动与作用力之间的关系。课程中涉及到分析力学(虚位移原理),达朗贝尔原理(动静法),质点系动力学普遍定理,动力学普遍方程与拉格朗日方程。虚位移原理是建立在具有理想约束的质点系基础之上来分析平衡状态的,是“以动论静”。让静止的物体在满足约束条件的范围产生假想位移,主动力做功为零。在物体不同的情况下用动力学知识进行求解。虚位移原理等价于静力学普遍方程:Frii1Ni0在解题过程中,利用约束力不做功避免了约束力的出现这是虚位移原理解题与静力学相比最大的优势。遇到的题目大概会有两类,求主动力,将约束解除求约束力,难点是找出主动力对应的虚位移关系,主要通过几何法和坐标系解析法来确定。*达朗贝尔原理又称动静法,即用静力学中研究平衡问题的方法来求解动力学问题。将牛顿力学中的加速度赋予新的定义。引入惯性力:FIma,通过运动分析判断出加速度,可得到惯性力,可直接用静力平衡的知识解决问题。惯性力矩也是同样的原理。质点系的达朗贝尔定理:在刚体平面运动中:F*maC*MCJC在刚体定轴转动中:FmaC***MMiMyjMzk*o*x解题过程中运用了静力学中力系简化的方法,不过原理上却不尽相同。运用达朗贝尔定理时惯性力向哪点简化,惯性力矩中的转动惯量即为这点的转动惯量。质点系动力学的三大普遍定理包括动量定理,动量矩定理,动能定理。描述了力的冲量、力矩、力做功与物体运动的关系。dPF(e)dLo(e)M(Fioi)动量定理:dt动量矩定理:dt动能定理:T2T1W12三个定理都是牛顿第二定律的变形,侧重点不同。应用动量定理可以避免考虑内力,动量矩定理不仅可以不考虑内力,且可忽略部分外力(被取矩的点或轴所受力),质点在有心力作用下动量矩守恒,动能定理中的动能变化由初末状态决定,在具有理想约束的一个自由度系统,应用动能定理建立系统运动与受力之间的关系,就显得非常简便。而在分析物体的动量、动量矩、动能时,不同的运动类型得到不同结果,平面运动与定轴转动是主要形式。这需要很好地掌握运动学知识。达朗贝尔原理将动力学问题转化为静力学求解,虚位移原理建立了静力学普遍方程,而拉格朗日将其合二为一,既得动力学普遍方程。*(FFii)ri0i1,2,3,Ni1N在理想约束的情况下,动力学普遍定理可解决一切动力学问题,特别是对自由度在两个以上的问题,借助计算机可较简便的求解。对完整系统,拉格朗日方程是实用的建立动力学方程方法:dTTdLL()Qj和()0(j1,2,,k)jqjjqjdtqdtq在广义坐标下,拉格朗日方程的形式化简为:ri)(Fmr0iiiqji1n应用拉格朗日方程可使系统的动力学方程的数目减少到最少(拉氏方程:3n–k个,牛顿方程:3n+k个),可消去全部理想约束力。拉氏方程遵循统一有效的、容易掌握的步骤解题,从而大大简化了复杂质点系动力学问题的分析和求解过程,提供了用广义坐标形式建立质点系动力学的普遍方程。值得指出的是拉氏方程中各项物理意义不如牛顿动力学方程那么明显;不能用该方程求解理想约束反例;对于单个物体或简单系统的动力学问题有时不如牛顿力学求解方便,因此到底怎样解决具体问题,由具体问题而定,不能一概而论。解题时一般取整个系统为研究对象,分析研究对象的约束性质,确定自由度数目,并适当选取广义坐标;运动分析,用广义坐标、广义速度等表示系统动能;分析作用在系统上的主动力,并计算广义力。当主动力均为有势力时,应以广义坐标表示系统动能有时还要计算非保守主动力的广义力;将动能、拉氏函数、广义力带入相应的拉氏方程;根据相应的拉格朗日方程建立质点系的运动微分方程。至此,笔者已将理论力学课程的大部分内容通过物体的运动串联起来,虽不够言简意赅,也存在一些漏洞,但总体上表达了自己的想法与所学。串联知识的同时,还简要介绍了自己在看书和做题时的心得体会以及一部分规范做题的步骤。在进行知识串联时,深刻体会到对自己不熟悉知识的力不从心,今后一定要在透彻的理解掌握基本概念的同时,多思考,多提问,多总结,一定不辜负章老师对我们的期望。二·书评本学期的理论力学课程,我主要以哈工大第六版《理论力学》和北京交通大学税国双老师编写的《理论力学》为教材,也参考了范钦珊编写的理论力学和贾书惠编写的理论力学教程。现主要将哈工大版(以下称哈版)和交大版教材(以下称交版)进行内容的简要比较,并阐述笔者对两本教材优势与不足的分析。哈工大第六版先比较一下两本教材的主要内容:交版《理论力学》共分为10章,内容包括:绪论、静力学基本概念、力系的简化、力系的平衡方程及其应用、点的运动学及刚体的简单运动、点的合成运动、刚体的平面运动、虚位移原理、达朗贝尔原理、质点系动力学普遍定理、动力学普遍方程与拉格朗日方程。交大版哈版分三大部分15章,内容包括:静力学(含静力学公理、物体的受力分析、平面力系、空间力系、摩擦);运动学(含点的运动学、刚体的简单运动、点的合成运动、刚体的平面运动);动力学(含质点动力学的基本方程、动量定理、动量矩定理、动能定理、达朗贝尔原理、虚位移原理)。哈尔滨大学理论力学教研室编《理论力学》【第六版】是高校广泛采用的教材。因其多年修订,已经趋于成熟,是很难超越的经典教材。整本书由浅入深,逻辑清晰,比较容易入门,但真正掌握起来却不是那么容易;课后习题更是多年的精华,题目有很强的代表性,也与实际联系紧密;每一章的小结能够言简意赅的把重点串联起来,使初学者更好地把握所学内容。相对于哈版,交版增加了动力学普遍方程与拉格朗日方程的章节,提升了分析力学的地位,更好的将分析力学融入教学;将动力学三大普遍定理合为一章,突出刚体平面运动微分方程的介绍,密切碰撞与动力学普遍定理的联系,数学计算要求较高;绪论部分,阐述了大量力学体系及力学史的内容,很好的突出了力学的地位,让我对力学更加重视和感兴趣;强调数学软件MATLAB的应用,试图将MATLAB软件和理论力学教学有机地结合起来,可以达到提高教学效率,激发学生的学习兴趣,培养学生独立思考问题的能力的目的。但交版毕竟只再版过一次,出现一些纰漏再所难免。现指出笔者在学习过程中发现的教材不恰当地方,与老师探讨。1·关于刚体定轴转动的定义。在交版教材的123页,是这样定义刚体绕定轴转动的:刚体在运动过程中,其上只有一条直线始终固定不动时,称刚体绕定轴转动。之后我做过这样一个题目:图示匀质细杆的端点A、B在固定圆环中沿壁运动。已知:杆长为L、重为P,质心C的速度大小为υC(常数),圆环半径为r。试求惯性力系向圆心O简化的结果。经分析可知,刚体AB是在绕刚体外O点定轴转动,这与所给概念冲突。哈版是这样定义的:刚体运动时。如果体内或其扩展部分有两点保持不动,这种运动称为刚体的定轴转动。实际上。刚体定轴转动时。体内或其扩展部分只能是有一线段保持不动,而不是有一直线始终保持不动。2·交版中在介绍平衡力系时没有指明刚体在平衡时的运动状态。而高中所学是受平衡力系的物体保持静止或匀速直线运动。因为平横的概念贯穿整个理论力学课程,我对此产生疑问,高中所学是否正确?查阅资料后,了解到当力系的主矢和主矩同时为零时,刚体的可能运动状态有:质心静止或作匀速直线运动;而整个刚体除静止或作匀速直线平移外,在一般情况下,刚体还可能有更复杂的绕质心转动的运动状态,其角速度的大小和方向会随时间变化。感觉教材应该指出这一点。3·交办的课后习题不够新颖,有很多是局限于哈版的课后习题的。但是因为内容的不同,导致课本知识与习题的脱节,特别是刚体平面运动微分方程部分,相应的课后习题较少,不能彰显着一部分的价值以及对数学计算的练习。4·还有一些小的印刷错误:如P270图9-47(b)FBx与FBy方l1向标反;P103①式中误印为,P20XXIR式中也有同样的问22题;P193④式中F应加负号,与所设方向相反;P212FImAa改tr,将其中一个改为B为mAa;P145图(a)中误印了两个aP95anr;Fy中FAx改为FAy,第二个M(F)改为MD(F)。P186练习题6-16未指明OA杆是否匀角速度运动,若不是匀角速度,向老师求教这个题的解法。另外几本参考书,因看的不是太多,简要评价如下:范钦珊主编的《理论力学》在新体系方面作了有益的尝试。静力学主要分为受力分析、力系简化、力系平衡三部分,叙述上有新意,教材比较注重联系工程实际,如动力学部分专设章节进行定性的工程实例分析。每章最后设有结论和讨论节,加深对基本内容的理解,并介绍相关内容的现代发展,很有意义。贾书惠主编的《理论力学》有鲜明特色,经典理论推导简明,思路清晰,重视通过概念和理论进行定性分析,特别是有很多应用实例,如飞轮的妙用、自由下落猫的转体、人造地球卫星的姿态稳定问题等典型实例的引入,对我有很强的吸引力,有助于开阔思路,促进思考,培养创新精神。另外,书中思考题的设置饶有趣味,富有启发性。三·课评先道一句:章老师,谢谢您了!通过半年的相处教学,我不仅较好的掌握了我的第一门专业基础课,更重要的接受了一种新颖的教学模式,您将课堂的引导与课下小组自学结合起来,将创新性思维与规范解题结合起来,将对概念的推导证明、强化理解与鼓励我们解决竞赛难题结合起来。这门课程是我们受益匪浅,谢谢您,章老师。现学生简要的对您教的这门课程发表自己的看法:1·教学不适应的地方与相应的优势您的课大多是通过调动大家的自觉性,来完成教学。要知道经历过十多年应试教育的我们,即使在茅以升班这样优秀的班集体也很难做到自觉地去掌握一门知识,在开学之初,大本分同学都对这种充满推导,互动性强,没有作业充满疑惑,很不适应。但随着课程的推进,我逐渐体会到这种教学模式的好处。通过基本原理的推导,使大家对基本概念有了更深刻透彻的了解,在后面的做题过程中,我也发现所谓难题就是对基本概念抠得更深的题目。我试着对公式的由来进行推导,对此记忆更加深刻,做题时一步步的按原理分析,最终将难题解出;很好的课堂互动和小组学习,使同学们更多地参与思考,调动大家积极性,对自己不懂的问题,通过与老师和同学的讨论当场解决,提高了效率;对于没有作业批改问题,作为班级学习委员,我还找您谈过这个问题。至此,学生还是认为作业批改有其必要性,老师您布置的作业大多为非常规开放性作业,事实上这种作业更有难度,也就更需要老师您的评价与回馈。我们一共有过三次测试,我觉得应该对每次的试卷进行总结分析。通过与您的谈话,我了解到学好专业课的三个重要组成部分:软件、数学、专业知识。你在教学过程中不断鼓励大家用MATLAB,对我们今后专业课的学习有深远意义。2·我的建议①.每周抽出一部分时间留给大家,让同学们讨论或是答疑。课前您也提到任选课太多的问题,这是我们无法改变的,真正用来思考问题的时间确实不多,如果拿出一部分课堂时间让大家去思考,也许会事半功倍。②.上面提到过的,进行作业批改和考试的分析。③.多介绍些专业课程与实际工程的联系,知道老师您的专业知识丰富,也有很多实践经验,如果将您的经历告诉大家,我想这门课的意义将不再是仅仅对知识的学习。章老师,我算是与您交流较多的学生,也算是您半个课代表吧。这也使我所学颇多,真的很高兴能有您这样的老师来给我们授课。您丰富的教学经验,对知识的总体把握,对同学们的关爱和敬业精神都值得我学习终生。您对我们班的期望很高,我们最得还不够好,希望在今后的学习道路上,希望能一直有您的指引,再次感谢您!第五篇:岩土试验力学课程论文岩土试验力学课程论文题目:岩土试验力学发展现状和前景专业:岩土工程一、岩土力学试验1.岩土力学试验概况要很好的解决岩土工程问题、防灾、治灾,必须首先进行勘察与测试、试验与分析,并利用土力学、岩石力学、基础工程、工程地质学等的理论与方法,对各类工程进行系统研究。因此,岩土力学试验是岩土工程规划设计、防灾的前期工程,也是地基与基础设计,治理地质灾害的不可缺少的重要环节。2.岩土力学试验目的(1)了解岩石本身的物理和力学性质;(2)岩体质量分级、工程地质条件与问题评价;(3)边坡、地基和隧道围岩变形及稳定性分析,地质灾害防治工程方案论证等;(4)为岩土工程设计与施工提供参数和依据;(5)揭示岩土的变形规律和强度特征及破裂机理,建立其数学力学模型,进行岩土工程结构的力学分析。3.岩土力学试验内容(1)岩石物理性质试验含水率、颗粒密度、块体密度;(2)岩石水理性质试验吸水性、渗透性、膨胀性、耐崩解性和冻融性。(3)岩石力学性质试验单轴压缩强度和变形试验、三轴压缩强度和变形试验、抗拉强度试验、直剪强度试验和点荷载强度。二、岩土试验力学概况岩土试验力学是土木工程岩土专业的一个分支,它是一门十分重要的技术基础课。它主要包括学习岩土实验力学的基本理论,知道岩土的物理力学性质、强度变形计算、稳定性分析、挡土墙及基坑围护的设计与计算、地基承载力等岩土力学基本理论与方法。结合有关交通土建、建筑工程、土木工程的理论和施工知识,分析和解决岩体工程及地基基础问题。三、岩土试验力学的发展现状1.计算方面由于岩土材料比较特殊,那么在研究岩土试验力学方面就会比较复杂。岩土体本身就是一个复杂的系统,具有不确定性,不规则性和不明确性。目前,我国的岩土试验力学工作者倾向于采用理想数学模型和力学模型建立和描述岩土的各类特性,结果往往不是很理想,甚至出现很大的偏差。那么,为解决这一现状,为突破创新,新的方法和技术是必不可少的。在此,我国也已经找到解决方案,注入了新的研究岩土试验力学理论的思想。分析几何就是研究岩土试验力学需要用的一种新技术,新方法。它的工作原理是研究一个复杂系统的形态、功能等。紧密联系它们之间的关系,用维数表展现系统的复杂性。系统与维数值成正比例关系,值越大,系统越复杂。分形几何在计算岩土试验力学中的应用主要包括“定量的对岩土材料结构进行描述,研究调查水如何在岩土中流动,测量岩土材料的强度和分析岩土力学特征”四方面的内容。分形几何

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论