锂离子电池技术的发展方向-英文版_第1页
锂离子电池技术的发展方向-英文版_第2页
锂离子电池技术的发展方向-英文版_第3页
锂离子电池技术的发展方向-英文版_第4页
锂离子电池技术的发展方向-英文版_第5页
已阅读5页,还剩50页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

LiFePO4CompositeCathodeswithConductingPolymers4YunhuiHuang(黄云辉),JohnB.Goodenough2009.10.17.E-mail:yhhuang@HuazhongUniversityofScienceandTechnology(华中科技大学)TheUniversityofTexasatAustin(得州大学奥斯汀分校)OutlineIntroduction123OurStrategyResultsandDiscussion4ConclusionsandProspectsOutline1IntroductionDevelopmentofLi-ionBatteriesHigh-PowerLi-ionBatteriesHighSafetyLowCostLongLifeNopollutionCathodeMaterialsMainCathodMaterialsCo-based

LiCoO2Mn-basedLiMn2O4LiNi0.5Mn1.5O4Multi-elementsLiNixCo1-x-yMyO2P-basedLiMPO4

LiFePO4LiNi2/3Mn1/3O2

▲LiFePO4

AsACathodeMaterialJ.GoodenoughandK.Padhi,J.Electrochem.Soc.,1997,144,1188.OlivineStructure(LiFePO4)HeterositeStructure(FePO4)MainProblems:(1)Lowratecapability;(2)Lowtapdensity;(3)Poorlow-temperatureperformance;(4)Patent.Advantages:Competitivetheoreticalcapacity(170mAh/g);Stablevoltage(3.4V);Low-cost;Environmentallybenign;Safety.ModificationTechnologyofLiFePO4RatecapabilityEnhanceelectronicconductivityImproveLi+diffusionchannelsC-coatingM-dopingNano-sizeSolidsolutionMilestonesof

LiFePO4DevelopmentA.Padhi,K.Monjundaswamy,J.B.Goodenough,J.Electrochem.Soc.,1997,144:1188------Firstreport(2002:PhostechLithiumCo.)

N.Ravet,J.B.Goodenough,S.Besner,M.Simoneau,P.Hovington,M.Armand,Paper127,TheElectrochemicalSocietyMeeting,Honolulu,HI,Oct17-22,1999.-------CarboncoatingS.Y.Chung,J.T.Bloking,Y.M.Chiang,Nat.Mater.,2002,2:123-128------DopedwithNb5+andMg2+(2003:A123Co.)J.Barker,M.Y.Saidi,J.L.Swoyer,Electrochem.Solid-StateLett.,2003,6:A53-A55--------Carbonreductionmethod(ValenceCo.)Carboncoatingof

LiFePO4CoatedwithcarbonObtainedbydecompositionoforganiccompoundsSchematicviewofthecarboncoatingincompositematerialspreparedby(a):addingcarbonblack,(b):addingsugar.CarbonisdepictedasblackandLiFePO4aswhiteChenZH,DahnJR.J.Eelectrochem.Soc.,2002,149(9):A1184abLowerthecontentofactivematerialsincathode;Reducethetapdensityofthecathode;Influencevolumeenergydensityofthecathode;NoimprovementinconductivityforthecoreofLiFePO4particles.ShortcomingsofcarboncoatingCarbonCoatingof

LiFePO4ImproveConductivitybyMetalGrains

SuchasAu,Ag,CunanoparticlesCroceF,EpifanioAD’,HassounJ,etal.Electrochem.andSolidStateLett.,2002,5(3):A47

ImproveConductivitybyDopingChungSY,BlokingJT,ChiangYM.Nat.Mater.2002,2:123Nano-scaledLiFePO4

Topreparenanosizedparticles(nanowire,nanoplate,nanobar).ImprovediffusionchannelsofLi+ionsNanomaterialsareunfavorableforprocessingofelectrodefilmonAlfoil.Ref.:B.W.Kang,G.Ceder,“Batterymaterialsforultrafastcharginganddischarging”,Nature,458(2009)190.Nano-scaledLiFePO4

Outline2OurStrategy

Toevaluatealternativecathodematerialsforalithium-ionbatteryforthepurposeofEVandHEV’s.Cost,cyclelife,safety,andenergydensity?Capacityandratecapability?Newmaterialsbasedonconventionaloxidestructureswithprovenhighratecapabilities;Newcathodeschemesbasedonconductivepolymerswhichmayserveeitherasself-containedcathodesorasanewconductivebinderinmoreconventionalcompositecathodes;SubstitutionintotheenvironmentallybenignandcosteffectiveLiFePO4toimproveratecapabilities.OBJECTIVESAPPROACHLiFePO4/PolymerCompositeCathodesLiFePO4/PPyCompositeCathode

ToimprovecapacityandratecapabilityofcompositeOxide/C/PTFEcathodesbyreplacinginactiveC+PTFEwithanelectrochemicallyactive,conductivepolymer,e.g.,polypyrrole(PPy)

PPy=

Needanamorphouscarboncoatonoxideparticletoprovideattachmentofoxidetopolymerandelectricalcontactbetweenredoxcoupleofoxideandcurrentcollectorthroughthepolymer.Y.H.Huang,J.B.Goodenough,J.Electrochem.Soc.,2006,153:A2282.Outline3ResultsandDiscussionElectrodepositionofLiFePO4/PPycompositeArflowC.E.R.E.W.E.(100mesh)LiFePO4andpyrroleElectrodepositionCondition(CyclicVoltammogram)Scanrange:0~1.3Vvs.Ag/AgClScanrate:100mVs-1,20cyclesElectrolyte:0.1mol/LLiClO4inacetonitrileElectro-polymerizationbycyclicvoltammogramElectrodepositionofLiFePO4/PPycomposite(C)(D)

A

C

DCyclicvoltammetriccurvefortheelectrodepositionoftheC-LiFePO4/PPycathode

XRDpatternsoftheC-LiFePO4/PPycompositeat(C)theoxidizedpotentialand(D)afterreduction.

PPy(red)-C-LiFePO4at0Vvs.Ag/AgCl

PPy(ox)-FePO4

at1.3VvsAg/AgClSEMimages:LiFePO4,LiFePO4/PPycompositeonsteelmesh,(C,D)magnifiedmicrographofLiFePO4/PPycompositeclosetoonemesh.undopingdoping[Py]n+nqClO4-[Pyq+(ClO4-)q]n+nqe-ElectrodepositionofLiFePO4/PPycompositeElectro-polymerization:Specificationofoptimalratiofor(C-LiFePO4)1-x(PPy)xMaximumcompositecapacitywasobtainedin(C-LiFePO4)1-x(PPy)xwithweightratiox0.2Chargeanddischargecompositecapacityvscyclenumberforthe(C-LiFePO4)1-x(PPy)xLiFePO4/PPyCompositeCathodeEnhancedCapacityandRateCapabilityExperimentalProcedure:Chargeatvariousratesto4.1V,dischargeatC/5.ExperimentalProcedure:ChargeatC/10to4.1V,dischargeatvariousrates.CapacityRate(C-LiFePO4)0.84(PPy)0.16C-LiFePO4/C/PTFEChargeDischargeChargeDischarge2C(30min)135.4(89%)133.5103.3(82%)67.05C(12min)130.4(85%)125.341.1(29%)31.710C(6min)111.8(73%)100.28.7(6%)6.320C(3min)97.1(64%)87.300ElectrodepositionofLiFePO4/PPycompositeElectro-polymerizationbyconsecutivepotentialstepsStudiedparametersbypotentialsteps:1-Oxidationpotential(0.9,1.0,1.1,1.2and1.3VvsAg/AgCl)2-Oxidationtime(3,5and7s)3-NumberofSteps(15,30,45and60)4-Reductionpotential(-0.1,-0.2,-0.3,-0.4and-0.5Vvs.Ag/AgCl)Fixedparametersduringpotentialsteps:1-Reductiontime(3s)2-Electrolytesolution(0.1MLiClO4acetonitrilesolution)3-PyrroleConcentration(0.4M)4-C-LiFePO4concentration(0.02M).5-Electrodedistance(0.8cm)6-Solutionstirring.ElectrodepositionofLiFePO4/PPycompositeElectrodemass(mg.cm-2)%PolymerOxidationTime(s)NºofStepsNºofStepsOxidationTime(s)a)b)Capacity(mAhg-1)OxidationTimeNºofStepsElectrodepositionofLiFePO4/PPycompositePolimerizationpotentialAbsolutevaluesPercentagesrelatedtobiggervaluePolimerizationpotentiala)b)Graphicalviewoftheelectrodecomposition(%ofpolymer),depositedmass(mg.cm-2)andspecificcapacity(mAhg-1)ofcomposites,relatedtothepolymerizationpotential.a)showstheabsolutevaluesandb)representsthepercentagerelatedtothebiggestvalue(6.2mgcm-2,30%ofPPyand154mAhg-1)

LiFePO4/PolymerCompositeCathodeY.H.Huang,J.B.Goodenough,Chem.Mater.,2008,20:7237.Electrodepositionbysimultaneouschemicalpolymerization

LiFePO4/PolymerCompositeCathodeCompositespecificcapacityvscyclenumberforLFP/7%PPycompositecathodepreparedwithsimultaneouschemicalpolymerization.

CellvoltageasafunctionofcompositespecificcapacityforLFP/polymercompositecathodes.LiFePO4/PolymerCompositeCathodeChargeat0.1C,dischargeat0.1-20C;Chargeat0.1-20C,dischargeat0.1C;Chargeat0.1-20C,dischargeat0.1-20C.Chargeat0.120C,dischargeat0.1C(Chargedupto94%in10min)Y.H.Huang,J.B.Goodenough,Chem.Mater.,2008,20:7237.Electrodepositionbysimultaneouschemicalpolymerization

Carbon-freeNano-LiFePO4Feature:(1)Carbonfree;(2)Highcapacity;(3)Goodratecapability;(4)Longcyclability;(5)Lowcost.NewElectrolyteLiFSILiFSIStrctureLiFSIadvantages:

Highthermalstability:betterthanLiPF6,decomposition150C;

HighelectronicconductivityandLi+diffusion:

3timeslargerthanLiPF6.

Highlow-temperatureconductivity:

1mScm-1at-50C.Cansolvelow-temperaturebottleneckofhigh-powerLibatteriesforEV/HEVs?Lithiumbis(fluorosulfonimide):Li[N(SO2F)2],whitepowderContent:99.5%;Impurity:Cl-

5ppm。Prof.ZhibinZhou(周志彬),CollaboratedwithProf.M.ArmandOutline4ConclusionsandProspectsCONCLUSIONSAremarkableimprovementintheratecapabilityandcapacityofcathodesusingLiFePO4byreplacingthecarbonplusTeflonadditiveswithpolypyrrole(PPy)bondedtotheoxideparticlesbythecarboncoat.Attachingaconductivepolymertoanactiveoxideparticleisageneralstrategythatalsopromisestoenhancetheratecapabilityofothercathodecomposites.Thevoltagerangeoftheredoxcoupleofthepolymermustoverlapthatoftheactivematerialifthestrategyistowork.Polymer-compositetechniquemaybecomeanefficientwaytoachievecarbon-freeLiFePO4cathodematerialwithcollaborationofnanotechnology.LiFePO4CompositeswithPolymersHigh-PowerLi-ionBatteriesLiFePO4BatteriesforPowerSourcesWhograspsthetechniqueofLiFePO4batteriesinadvance,whowillbecometheleaderofthemarket!PatentOriginalpatent(J.B.Goodenough)Carbon-coatedpatent(2008China)TechniqueQualityisnotstablefordifferentbatch;Lowtemperature;TapdensityMarketIncreasingwithEVs(100,000tons2012)Justbeginning,indevelopingAcknowledgementsK.ZaghibandN.Ravet(Canada)I.BoyanoaandI.deMeatza(Spain)forcollaborationThankyouforyourattention!LiFePO4CompositeswithPolymers《化妆品术语》起草情况汇报中国疾病预防控制中心环境与健康相关产品安全所一、标准的立项和下达时间2006年卫生部政法司要求各标委会都要建立自己的术语标准。1ONE二、标准经费标准研制经费:3.8万三、标准的立项意义术语标准有利于行业间技术交流、提高标准一致性、消除贸易误差,作为标准体系中的基础标准,术语标准在各个领域的标准体系中均起着重要的作用。随着我国化妆品卫生标准体系建设逐步加快,所涉及的术语和定义的数量也在迅速增长,在此情形下,化妆品术语标准的制定就显得尤为重要。四、标准的制订原则1.合法性遵守《化妆品卫生监督条例》、《化妆品卫生监督条例实施细则》中关于化妆品的定义。2.协调性直接引用或修改采用的方式,与相关标准中的术语和定义相协调。3.科学性对于没有国标或定义不统一的术语,在定义时体现科学性的原则。4.实用性在标准体系中出现频率较高,与行业联系较紧密的术语优先选用。五、标准的起草经过

第一阶段:资料搜集

搜集国内外相关法规、标准、文献并对国外文献如美国21CFR进行翻译。第二阶段:2007年末形成初稿

初稿内容包括一般术语、卫生化学术语、毒理学术语、微生物术语、产品术语、人体安全和功效评价术语,常用英文成份术语等7部分。第三阶段:专家统稿1.2007年12月第一次专家统稿会(修订情况:1.在结构上增加原料功能术语、相关国际组织和科研机构等内容;2.在内容上增加一般术语、产品术语的种类,将化妆品行业的新产品类别纳入本标准;3.对于毒理学、卫生化学、微生物学术语进行修改;4.删除与化妆品联系不紧密、无存在必要的常用英文成分术语。2.2009年1月第二次专家统稿会会议意见:1.修改能引用国家标准的尽量引用国家标准;对存在歧义的个别用词进行修改。2.删除由于本标准中的“产品术语”一章和香化协会所制定的某个标准存在重复,因此删除“产品术语”一章的内容;对“原料功能术语”的内容进行梳理,删除了20余条内容。3.增加专家建议增加“化妆品限用物质”等若干项术语。第四

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论