内蒙古自治区乌兰察布市集宁一中2024届高二上数学期末学业水平测试模拟试题含解析_第1页
内蒙古自治区乌兰察布市集宁一中2024届高二上数学期末学业水平测试模拟试题含解析_第2页
内蒙古自治区乌兰察布市集宁一中2024届高二上数学期末学业水平测试模拟试题含解析_第3页
内蒙古自治区乌兰察布市集宁一中2024届高二上数学期末学业水平测试模拟试题含解析_第4页
内蒙古自治区乌兰察布市集宁一中2024届高二上数学期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

内蒙古自治区乌兰察布市集宁一中2024届高二上数学期末学业水平测试模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.动点P,Q分别在抛物线和圆上,则的最小值为()A. B.C. D.2.已知向量,则“”是“”的()A充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件3.下列命题中正确的是()A.函数最小值为2.B.函数的最小值为2.C.函数的最小值为D.函数的最大值为4.已知点是椭圆上的一点,点,则的最小值为A. B.C. D.5.平面与平面平行的充分条件可以是()A.平面内有一条直线与平面平行B.平面内有两条直线分别与平面平行C.平面内有无数条直线分别与平面平行D平面内有两条相交直线分别与平面平行6.已知向量,,且,则实数等于()A1 B.2C. D.7.双曲线:的一条渐近线与直线垂直,则它的离心率为()A. B.C. D.8.若两个不同平面,的法向量分别为,,则()A.,相交但不垂直 B.C. D.以上均不正确9.已知抛物线的焦点为,在抛物线上有一点,满足,则的中点到轴的距离为()A. B.C. D.10.在长方体中,,,则异面直线与所成角的正弦值是()A. B.C. D.11.设是数列的前项和,已知,则数列()A.是等比数列,但不是等差数列 B.是等差数列,但不是等比数列C.是等比数列,也是等差数列 D.既不是等差数列,也不是等比数列12.阿基米德是古希腊著名的数学家、物理学家,他利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积,已知在平面直角坐标系中,椭圆的面积为,两焦点与短轴的一个端点构成等边三角形,则椭圆的标准方程是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知一组数据的平均数为4,方差为3,若另一组数据的平均数为10,则该组数据的方差为_______.14.已知一组样本数据5、6、a、6、8的极差为5,若,则其方差为________.15.如图,已知,分别是椭圆的左、右焦点,现以为圆心作一个圆恰好经过椭圆的中心并且交椭圆于点,.若过点的直线是圆的切线,则椭圆的离心率为_________16.将一枚质地均匀的骰子,先后抛掷次,则出现向上的点数之和为的概率是________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,其中.(1)当时,求函数的单调性;(2)若对,不等式在上恒成立,求的取值范围.18.(12分)已知圆C的圆心为,一条直径的两个端点分别在x轴和y轴上(1)求圆C的方程;(2)直线l:与圆C相交于M,N两点,P(异于点M,N)为圆C上一点,求△PMN面积的最大值19.(12分)已知数列满足(1)证明数列是等比数列,并求数列的通项公式;(2)令,求数列的前项和20.(12分)某保险公司根据官方公布的历年营业收入,制成表格如下:表1年份2011201220132014201520162017201820192020年份序号x12345678910营业收入y(亿元)0.529.3633.6132352571912120716822135由表1,得到下面的散点图:根据已有的函数知识,某同学选用二次函数模型(b和a是待定参数)来拟合y和x的关系.这时,可以对年份序号做变换,即令,得,由表1可得变换后的数据见表2.表2T149162536496481100Y0.529.3633.6132352571912120716822135(1)根据表中数据,建立y关于t的回归方程(系数精确到个位数);(2)根据(1)中得到的回归方程估计2021年的营业收入,以及营业收入首次超过4000亿元的年份.附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为,.参考数据:.21.(12分)已知数列满足且.(1)证明数列是等比数列;(2)设数列满足,,求数列的通项公式.22.(10分).在直角坐标系中,点,直线的参数方程为(为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为,直线与曲线相交于A,B两点(1)求曲线的直角坐标方程和直线的普通方程;(2)若,求值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】设,根据两点间距离公式,先求得P到圆心的最小距离,根据圆的几何性质,即可得答案.【题目详解】设,圆化简为,即圆心为(0,4),半径为,所以点P到圆心的距离,令,则,令,,为开口向上,对称轴为的抛物线,所以的最小值为,所以,所以的最小值为.故选:B2、A【解题分析】根据得出,根据充分必要条件的定义可判断.【题目详解】解:∵,向量,,∴,即,根据充分必要条件的定义可判断:“”是“”的充分不必要条件,故选:A.3、D【解题分析】根据基本不等式知识对选项逐一判断【题目详解】对于A,时为负值,故A错误对于B,,而无解,无法取等,故B错误对于,当且仅当即时等号成立,故,D正确,C错误故选:D4、D【解题分析】设,则,.所以当时,的最小值为.故选D.5、D【解题分析】根据平面与平面平行的判定定理可判断.【题目详解】对A,若平面内有一条直线与平面平行,则平面与平面可能平行或相交,故A错误;对B,若平面内有两条直线分别与平面平行,若这两条直线平行,则平面与平面可能平行或相交,故B错误;对C,若平面内有无数条直线分别与平面平行,若这无数条直线互相平行,则平面与平面可能平行或相交,故C错误;对D,若平面内有两条相交直线分别与平面平行,则根据平面与平面平行的判定定理可得平面与平面平行,故D正确.故选:D.6、C【解题分析】利用空间向量垂直的坐标表示计算即可得解【题目详解】因向量,,且,则,解得,所以实数等于.故选:C7、A【解题分析】先利用直线的斜率判定一条渐近线与直线垂直,求出,再利用双曲线的离心率公式和进行求解.【题目详解】因为直线的斜率为,所以双曲线的一条渐近线与直线垂直,所以,即,则双曲线的离心率.故选:A.卷II(非选择题8、B【解题分析】由向量数量积为0可求.【题目详解】∵,,∴,∴,∴,故选:B.9、A【解题分析】设点,利用抛物线的定义求出的值,可求得点的横坐标,即可得解.【题目详解】设点,易知抛物线的焦点为,由抛物线的定义可得,得,所以,点的横坐标为,故点到轴的距离为.故选:A.10、C【解题分析】连接,可得,得到异面直线与所成角即为直线与所成角,设,设,求得的值,在中,利用余弦定理,即可求解.【题目详解】如图所示,连接,在正方体中,可得,所以异面直线与所成角即为直线与所成角,设,由在长方体中,,,设,可得,在直角中,可得,在中,可得,所以,因为,所以.故选:C.11、B【解题分析】根据与的关系求出通项,然后可知答案.【题目详解】当时,,当时,,综上,的通项公式为,数列为等差数列同理,由等比数列定义可判断数列不是等比数列.故选:B12、A【解题分析】由椭圆的面积为和两焦点与短轴的一个端点构成等边三角形,得到求解.【题目详解】由题意得,解得,所以椭圆的标准方程是.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、12【解题分析】根据题意,先通过原始数据的平均数、方差及新数据的平均数求出k,进而求出新数据的方差.【题目详解】由题意,原式数据的平均数和方程分别为:,则新数据的平均数,于是新数据的方差.故答案为:12.14、2【解题分析】根据极差的定义可求得a的值,再根据方差公式可求得结果.【题目详解】因为该组数据的极差为5,,所以,解得.因为,所以该组数据的方差为故答案为:.15、##【解题分析】根据给定条件探求出椭圆长轴长与其焦距的关系即可计算作答.【题目详解】设椭圆长轴长为,焦距为,即,依题意,,而直线是圆的切线,即,则有,又点在椭圆上,即,因此,,从而有,所以椭圆的离心率为.故答案为:16、【解题分析】将向上的点数记作,先计算出所有的基本事件数,并列举出事件“出现向上的点数之和为”所包含的基本事件,然后利用古典概型的概率公式可计算出所求事件的概率.【题目详解】将骰子先后抛掷次,出现向上的点数记作,则基本事件数为,向上的点数之和为这一事件记为,则事件所包含的基本事件有:、、,共个基本事件,因此,.故答案为:.【题目点拨】本题考查利用古典概型的概率公式计算概率,解题时一般要列举出相应的基本事件,遵循不重不漏的基本原则,考查计算能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)的单调递增区间为,,单调递减区间为,(2)【解题分析】(1)求导可得,分析正负即得解;(2)转化在上恒成立为,分析函数单调性,转化为f(1)≤1f(-1)≤1,求解即可【小问1详解】当时,令,解得,,当变化时,,的变化情况如下表:↘极小值↗极大值↘极小值↗所以的单调递增区间为,,单调递减区间为,【小问2详解】由条件可知,从而恒成立当时,;当时,因此函数在上的最大值是与两者中的较大者为使对任意的,不等式在上恒成立,当且仅当f(1)≤1f(-1)≤1即在上恒成立所以,因此满足条件的的取值范围是18、(1);(2).【解题分析】(1)设直径两端点分别为,,由中点公式求参数a、b,进而求半径,即可得圆C的方程;(2)利用弦心距、半径、弦长的几何关系求,再由圆心到直线l的距离求P到直线l的距离的最大值,即可得△PMN面积的最大值【小问1详解】设直径两端点分别为,,则,,所以,,则圆C半径,所以C的方程为【小问2详解】圆心C到直线l的距离,则,点P到直线l的距离的最大值为,所以,△PMN面积的最大值为19、(1)证明见解析,(2)【解题分析】(1)根据等比数列的定义证明数列是以为首项,2为公比的等比数列,进而求解得答案;(2)根据错位相减法求和即可.【小问1详解】解:数列满足,∴数列是以为首项,2为公比的等比数列,,即;∴【小问2详解】解:,,,,20、(1);(2)估计2021年的营业收入约为2518亿元,估计营业收入首次超过4000亿元的年份为2024年.【解题分析】(1)根据的公式,将题干中的数据代入,即得解;(2)代入,可估计2021年的营业收入;令,可求解的范围,继而得到的范围,即得解【题目详解】(1),,故回归方程为.(2)2021年对应的t的值为121,营业收入,所以估计2021年的营业收入约为2518亿元.依题意有,解得,故.因为,所以估计营业收入首次超过4000亿元的年份序号为14,即2024年.21、(1)证明见解析;(2).【解题分析】(1)根据题意可得,根据等比数列的定义,即可得证;(2)由(1)可得,可得,利用累加法即可求得数列的通

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论