河南省豫南豫北名校2024学年数学高二上期末质量检测试题含解析_第1页
河南省豫南豫北名校2024学年数学高二上期末质量检测试题含解析_第2页
河南省豫南豫北名校2024学年数学高二上期末质量检测试题含解析_第3页
河南省豫南豫北名校2024学年数学高二上期末质量检测试题含解析_第4页
河南省豫南豫北名校2024学年数学高二上期末质量检测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省豫南豫北名校2024学年数学高二上期末质量检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.等比数列{}中,已知=8,+=4,则的值为()A.1 B.2C.3 D.52.函数在上的最大值是A. B.C. D.3.已知函数,则()A.1 B.2C.3 D.54.已知命题p:,,则命题p的否定为()A., B.,C., D.,5.观察数列,(),,()的特点,则括号中应填入的适当的数为()A. B.C. D.6.过点且斜率为的直线方程为()A. B.C. D.7.已知直线l和抛物线交于A,B两点,O为坐标原点,且,交AB于点D,点D的坐标为,则p的值为()A. B.1C. D.28.设是函数的导函数,的图象如图所示,则的图象最有可能的是()A. B.C. D.9.在等差数列中,已知,则()A.4 B.8C.3 D.610.已知圆C过点,圆心在x轴上,则圆C的方程为()A. B.C. D.11.下面三种说法中,正确说法的个数为()①如果两个平面有三个公共点,那么这两个平面重合;②两条直线可以确定一个平面;③若,,,则A.1 B.2C.3 D.012.某工厂节能降耗技术改造后,在生产某产品过程中记录的产量x(吨)与相应的生产能耗y(吨)的几组对应数据如下表,现发现表中有个数据看不清,已知回归直线方程为=6.3x+6.8,下列说法正确的是()x23456y1925★4044A.看不清的数据★的值为33B.回归系数6.3的含义是产量每增加1吨,相应的生产能耗实际增加6.3吨C.据此模型预测产量为8吨时,相应的生产能耗为50.9吨D.回归直线=6.3x+6.8恰好经过样本点(4,★)二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,若在上是增函数,则实数的取值范围是________14.已知长方体中,,,则点到平面的距离为______15.曲线的一条切线的斜率为,该切线的方程为________.16.已知直线被圆截得的弦长等于该圆的半径,则实数_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列的各项均为正数,,为自然对数的底数(1)求函数的单调区间,并比较与的大小;(2)计算,,,由此推测计算的公式,并给出证明;18.(12分)如图,△ABC中,,,在三角形内挖去一个半圆(圆心O在边BC上,半圆与AC、AB分别相切于点C,M,与BC交于点N),将△ABC绕直线BC旋转一周得到一个旋转体(1)求该几何体中间一个空心球表面积的大小;(2)求图中阴影部分绕直线BC旋转一周所得旋转体的体积19.(12分)已知椭圆与椭圆的焦点相同,且椭圆C过点(1)求椭圆C的方程;(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆C恒有两个交点A,B,且(O为坐标原点),若存在,求出该圆的方程;若不存在,说明理由20.(12分)已知数列的前项和为,,.(1)求的通项公式;(2)求数列的前项和;(3)若数列,,求前项和.21.(12分)在平面直角坐标系xOy中,已知椭圆E:(a>b>0)的左、右焦点分别为F1,F2,离心率为.点P是椭圆上的一动点,且P在第一象限.记的面积为S,当时,.(1)求椭圆E的标准方程;(2)如图,PF1,PF2的延长线分别交椭圆于点M,N,记和的面积分别为S1和S2.(i)求证:存在常数λ,使得成立;(ii)求S2-S1的最大值.22.(10分)已知函数,.(1)若在单调递增,求的取值范围;(2)若,求证:.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】由等比数列性质求出公比,将原式化简后计算【题目详解】设等比数列{}的公比为,则=,=,所以==.又+=+=(+)=8×=2,+=+=(+)=8×=1,所以+++=2+1=3.故选:C2、D【解题分析】求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可,结合函数的单调性求出的最大值即可【题目详解】函数的导数令可得,可得上单调递增,在单调递减,函数在上的最大值是故选D【题目点拨】本题考查了函数的单调性、最值问题,是一道中档题3、C【解题分析】利用导数的定义,以及运算法则,即可求解.【题目详解】,,所以,所以故选:C4、D【解题分析】根据全称命题与存在性命题的关系,准确改写,即可求解.【题目详解】根据全称命题与存在性命题的关系可得:命题“p:,”的否定式为“,”.故选:D.5、D【解题分析】利用观察法可得,即得.【题目详解】由题可得数列的通项公式为,∴.故选:D6、B【解题分析】利用点斜式可得出所求直线的方程.【题目详解】由题意可知所求直线的方程为,即.故选:B.7、B【解题分析】由垂直关系得出直线l方程,联立直线和抛物线方程,利用韦达定理以及数量积公式得出p的值.【题目详解】,,即联立直线和抛物线方程得设,则解得故选:B8、C【解题分析】利用导函数的图象,判断导函数的符号,得到函数的单调性以及函数的极值点,然后判断选项即可【题目详解】解:由题意可知:和时,,函数是增函数,时,,函数是减函数;是函数的极大值点,是函数的极小值点;所以函数的图象只能是故选:C9、B【解题分析】根据等差数列的性质计算出正确答案.【题目详解】由等差数列的性质可知,得.故选:B10、C【解题分析】设出圆的标准方程,将已知点的坐标代入,解方程组即可.【题目详解】设圆的标准方程为,将坐标代入得:,解得,故圆的方程为,故选:C.11、A【解题分析】对于①,有两种情况,对于②考虑异面直线,对于③根据线面公理可判断.【题目详解】如果两个平面有三个公共点,那么这两个平面重合或者是相交,故①不正确;两条异面直线不能确定一个平面,故②不正确;若,,,可知必在交线上,则,故③正确;综上所述只有一个说法是正确的.故选:A12、D【解题分析】根据回归直线方程的性质和应用,对每个选项进行逐一分析,即可判断和选择.【题目详解】对A:因为,将代入,故,∴,故A错误;对,回归系数6.3的含义是产量每增加1吨,相应的生产能耗大约增加6.3吨,故错误;对,当时,,故错误;对,因为,故必经过,故正确.故选:.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】根据函数在上是增函数,分段函数在整个定义域内单调,则在每个函数内单调,注意衔接点的函数值.【题目详解】解:因为函数在上是增函数,所以在区间上是增函数且在区间上也是增函数,对于函数在上是增函数,则;①对于函数,(1)当时,,外函数为定义域内的减函数,内函数在上是增函数,根据复合函数“同增异减”可得时函数在区间上是减函数,不符合题意,故舍去,(2)当时,外函数为定义域内的增函数,要使函数在区间上是增函数,则内函数在上也是增函数,且对数函数真数大于0,即在上也要恒成立,所以,又,所以,②又在上是增函数则在衔接点处函数值应满足:,化简得,③由①②③得,,所以实数的取值范围是.故答案为:.【题目点拨】方法点睛:利用单调性求参数方法如下:(1)依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较;(2)需注意若函数在区间上是单调的,则该函数在此区间的任意子集上也是单调的;(3)分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值14、##2.4【解题分析】过作于,可证即为点到平面的距离.【题目详解】过作于,∵是长方体,∴平面平面,又∵平面平面,∴平面,设点到平面的距离为,∵∥平面,∴根据等面积法得,故答案为:.15、【解题分析】使用导数运算公式求得切点处的导数值,并根据导数的几何意义等于切线斜率求得切点的横坐标,进而得到切点坐标,然后利用点斜式求出切线方程即可.【题目详解】的导数为,设切点为,可得,解得,即有切点,则切线的方程为,即.故答案为:.【题目点拨】本题考查导数的加法运算,导数的几何意义,和求切线方程,难度不大,关键是正确的使用导数运算公式求得切点处的导数值,16、2或-4【解题分析】求出圆心到直线的距离,由几何法表示出弦长,列出等量关系,即可求出结果.【题目详解】由得,所以圆的圆心为,半径,圆心到直线的距离,则由题可得,即,解得或.故答案为:2或.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)的单调递增区间为,单调递减区间为;(2)详见解析【解题分析】(1)求出的定义域,利用导数求其最大值,得到,取即可得出答案.(2)由,变形求得,,,由此推测:然后用数学归纳法证明即可.【小问1详解】的定义域为,当,即时,单调递增;当,即时,单调递减故的单调递增区间为,单调递减区间为当时,,即令,得,即【小问2详解】;;由此推测:①下面用数学归纳法证明①(1)当时,左边右边,①成立(2)假设当时,①成立,即当时,,由归纳假设可得所以当时,①也成立根据(1)(2),可知①对一切正整数都成立18、(1);(2).【解题分析】根据旋转体的轴截面图,根据已知条件求球的半径与长,再利用球体、圆锥的面积、体积公式计算即可.【小问1详解】连接,则,设,在中,,;【小问2详解】,∴圆锥球.19、(1);(2)存在,.【解题分析】(1)与焦点相同可求出c,将代入方程结合a、b、c关系即可求a和b;(2)直线AB斜率存在时,设直线AB的方程为,联立AB方程与椭圆方程,得到根与系数的关系;由得,结合韦达定理得k与m的关系;再由圆与直线相切,即可求其半径;最后再验证AB斜率不存在时的情况即可.【小问1详解】,由题可知,解得点,所以椭圆的方程为;【小问2详解】设,设,代入,整理得,由得,即,由韦达定理化简得,即,设存在圆与直线相切,则,解得,所以圆的方程为,又若轴时,检验知满足条件,故存在圆心在原点的圆符合题意20、(1)(2)(3)【解题分析】(1)由可求得的值,令,由可得,两式作差可推导出数列为等比数列,确定该数列的首项和公比,即可求得数列的通项公式;(2)求得,利用错位相减法可求得;(3)利用奇偶分组法,结合等差数列和等比数列的求和公式可求得.【小问1详解】解:当时,,可得,当时,由可得,上述两个等式作差得,可得,所以,数列是以为首项,以为公比的等比数列,故.【小问2详解】解:,所以,,所以,,上述两个等式作差得,因此,.【小问3详解】解:由题意可得,,所以,.21、(1)(2)(i)存在常数,使得成立;(ii)的最大值为.【解题分析】(1)求点P的坐标,再利用面积和离心率,可以求出,然后就可以得到椭圆的标准方程;(2)设点的坐标和直线方程,联立方程,解出的y坐标值与P的坐标之间的关系,求以焦距为底边的三角形面积;利用均值定理当且仅当时取等号,求最大值.【小问1详解】先求第一象限P点坐标:,所以P点的坐标为,所以,所以椭圆E的方程为【小问2详解】设,易知直线和直线的坐标均不为零,因为,所以设直线的方程为,直线的方程为,由所以,因为,,所以所以同理由所以,因为,,所以所以,因为,,(i)所以所以存在常数,使得成立.(ii),当且仅当,时取等号,所以的最大值为.22、(1);(2)证明见解析.【解题分析】(1)由函数在上单调递增,则在上恒成立,由求解.(2)由(1)的结论,取,有,即在上恒成立,然后令,有求解.【题目详解】(1)因为函数在上单调递

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论