玉林市重点中学2024学年高二数学第一学期期末质量跟踪监视模拟试题含解析_第1页
玉林市重点中学2024学年高二数学第一学期期末质量跟踪监视模拟试题含解析_第2页
玉林市重点中学2024学年高二数学第一学期期末质量跟踪监视模拟试题含解析_第3页
玉林市重点中学2024学年高二数学第一学期期末质量跟踪监视模拟试题含解析_第4页
玉林市重点中学2024学年高二数学第一学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

玉林市重点中学2024学年高二数学第一学期期末质量跟踪监视模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.有一个圆锥形铅垂,其底面直径为10cm,母线长为15cm.P是铅垂底面圆周上一点,则关于下列命题:①铅垂的侧面积为150cm2;②一只蚂蚁从P点出发沿铅垂侧面爬行一周、最终又回到P点的最短路径的长度为cm.其中正确的判断是()A.①②都正确 B.①正确、②错误C.①错误、②正确2.某社区医院为了了解社区老人与儿童每月患感冒的人数y(人)与月平均气温x(℃)之间的关系,随机统计了某4个月的患病(感冒)人数与当月平均气温,其数据如下表:月平均气温x(℃)171382月患病y(人)24334055由表中数据算出线性回归方程中的,气象部门预测下个月的平均气温约为9℃,据此估计该社区下个月老年人与儿童患病人数约为()A.38 B.40C.46 D.583.有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球.甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是6”,丙表示事件“两次取出的球的数字之和是5”,丁表示事件“两次取出的球的数字之和是偶数”,则下列判断正确的是()A.甲与丙是互斥事件 B.乙与丙是对立事件C.甲与丁是对立事件 D.丙与丁是互斥事件4.为了解青少年视力情况,统计得到名青少年的视力测量值(五分记录法)的茎叶图,其中茎表示个位数,叶表示十分位数,则该组数据的中位数是()A. B.C. D.5.某家大型超市近10天的日客流量(单位:千人次)分别为:2.5、2.8、4.4、3.6.下列图形中不利于描述这些数据的是()A.散点图 B.条形图C.茎叶图 D.扇形图6.某中学高一年级有200名学生,高二年级有260名学生,高三年级有340名学生,为了了解该校高中学生完成作业情况,现用分层抽样的方法抽取一个容量为40的样本,则高二年级抽取的人数为()A.10 B.13C.17 D.267.变量,之间有如下对应数据:3456713111087已知变量与呈线性相关关系,且回归方程为,则的值是()A.2.3 B.2.5C.17.1 D.17.38.若“”是“”的充分不必要条件,则实数m的值为()A.1 B.C.或1 D.或9.过抛物线的焦点的直线交抛物线于不同的两点,则的值为A.2 B.1C. D.410.已知点,,直线与线段相交,则实数的取值范围是()A.或 B.或C. D.11.已知对任意实数,有,且时,则时A. B.C. D.12.已知双曲线,则双曲线的渐近线方程为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知点F是抛物线的焦点,点,点P为抛物线上的任意一点,则的最小值为_________.14.已知两点和则以为直径的圆的标准方程是__________.15.已知数列{}的通项公式为,前n项和为,当取得最小值时,n的值为___________.16.若,均为正数,且,(1)的最大值为;(2)的最小值为;(3)的最小值为;(4)的最小值为,则结论正确的是__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)三棱锥中,,,,直线与平面所成的角为,点在线段上.(1)求证:;(2)若点在上,满足,点满足,求实数使得二面角的余弦值为.18.(12分)年月日,中国选手杨倩在东京奥运会女子米气步枪决赛由本得冠军,为中国代表团揽入本届奥运会第一枚金牌.受奥运精神的鼓舞,某射击俱乐部组织名射击爱好者进行一系列的测试,并记录他们的射击得分(单位:分),将所得数据整理得到如图所示的频率分布直方图.(1)求频率分布直方图中的值,并估计该名射击爱好者的射击平均得分(求平均值时同一组数据用该组区间的中点值作代表);(2)若采用分层抽样的方法,从得分高于分的射击爱好者中随机抽取人调查射击技能情况,再从这人中随机选取人进行射击训练,求这人中至少有人的分数高于分的概率.19.(12分)已知函数,从下列两个条件中选择一个使得数列{an}成等比数列.条件1:数列{f(an)}是首项为4,公比为2的等比数列;条件2:数列{f(an)}是首项为4,公差为2的等差数列.(1)求数列{an}的通项公式;(2)求数列的前n项和.20.(12分)设等差数列的前项和为(1)求的通项公式;(2)求数列的前项和21.(12分)如图,四棱锥中,,,,平面.(1)在线段上是否存在一点使得平面?若存在,求出的位置;若不存在,请说明理由;(2)求四棱锥的体积.22.(10分)已知椭圆:的一个焦点坐标为,离心率.(1)求椭圆的方程;(2)设为坐标原点,椭圆与直线相交于两个不同的点A、B,线段AB的中点为M.若直线OM的斜率为-1,求线段AB的长;(3)如图,设椭圆上一点R的横坐标为1(R在第一象限),过R作两条不重合直线分别与椭圆交于P、Q两点、若直线PR与QR的倾斜角互补,求直线PQ的斜率的所有可能值组成的集合.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】根据圆锥的侧面展开图为扇形,由扇形的面积公式计算即可判断①,在展开图中可知沿着爬行即为最短路径,计算即可判断②.【题目详解】直径为10cm,母线长为15cm.底面圆周长为.将其侧面展开后得到扇形半径为cm,弧长为,则扇形面积为,①错误.将其侧面展开,则爬行最短距离为,由弧长公式得展开后扇形弧度数为,作,,又,,cm,②正确.故选:C2、B【解题分析】由表格数据求样本中心,根据线性回归方程过样本中心点,将点代入方程求参数,写出回归方程,进而估计下个月老年人与儿童患病人数.【题目详解】由表格得为,由回归方程中的,∴,解得,即,当时,.故选:B.3、D【解题分析】根据互斥事件和对立事件的定义判断【题目详解】当第一次取出1,第二次取出4时,甲丙同时发生,不互斥不对立;第二次取出的球的数字是6与两次取出的球的数字之和是5不可能同时发生,但可以同时不发生,不对立,当第一次取出1,第二次取出3时,甲与丁同时发生,不互斥不对立,两次取出的球的数字之和是5与两次取出的球的数字之和是偶数不可以同时发生,但可以同时不发生,因此是互斥不对立故选:D4、B【解题分析】将样本中的数据由小到大进行排列,利用中位数的定义可得结果.【题目详解】将样本中的数据由小到大进行排列,依次为:、、、、、、、、、,因此,这组数据的中位数为.故选:B.5、A【解题分析】根据数据的特征以及各统计图表的特征分析即可;【题目详解】解:茎叶图、条形图、扇形图均能将数据描述出来,并且能够体现出数据的变化趋势;散点图表示因变量随自变量而变化的大致趋势,故用来描述该超市近10天的日客流量不是很合适;故选:A6、B【解题分析】计算出抽样比可得答案.【题目详解】该校高中学生共有名,所以高二年级抽取的人数名.故选:B.7、D【解题分析】将样本中心点代入回归方程后求解【题目详解】,,将样本中心点代入回归方程,得故选:D8、B【解题分析】利用定义法进行判断.【题目详解】把代入,得:,解得:或.当时,可化为:,解得:,此时“”是“”的充要条件,应舍去;当时,可化为:,解得:或,此时“”是“”的充分不必要条件.故.故选:B9、D【解题分析】本题首先可以通过直线交抛物线于不同的两点确定直线的斜率存在,然后设出直线方程并与抛物线方程联立,求出以及的值,然后通过抛物线的定义将化简,最后得出结果【题目详解】因为直线交抛物线于不同的两点,所以直线的斜率存在,设过抛物线的焦点的直线方程为,由可得,,因为抛物线的准线方程为,所以根据抛物线的定义可知,,所以,综上所述,故选D【题目点拨】本题考查了抛物线的相关性质,主要考查了抛物线的定义、过抛物线焦点的直线与抛物线相交的相关性质,考查了计算能力,是中档题10、B【解题分析】由可求出直线过定点,作出图象,求出和,数形结合可得或,即可求解.【题目详解】由可得:,由可得,所以直线:过定点,作出图象如图所示:,,若直线与线段相交,则或,所以实数的取值范围是或,故选:B11、B【解题分析】,所以是奇函数,关于原点对称,是偶函数,关于y轴对称,时则都是增函数,由对称性可知时递增,递减,所以考点:函数奇偶性单调性12、A【解题分析】求出、的值,可得出双曲线的渐近线方程.【题目详解】在双曲线中,,,因此,该双曲线的渐近线方程为.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、3【解题分析】根据抛物线的定义可求最小值.【题目详解】如图,过作抛物线准线的垂线,垂足为,连接,则,当且仅当共线时等号成立,故的最小值为3,故答案为:3.14、【解题分析】根据的中点是圆心,是半径,即可写出圆的标准方程.【题目详解】因为和,故可得中点为,又,故所求圆的半径为,则所求圆的标准方程是:.故答案为:.15、7【解题分析】首先求出数列的正负项,再判断取得最小值时n的值.【题目详解】当,,解得:,当和时,,所以取得最小值时,.故答案为:716、(1)(2)(4).【解题分析】利用基本不等式求的最大值可判断(1);利用“”的妙用以及基本不等式可判断(2);将所求代数式转化为关于的二次函数结合由二次函数的性质可得最值判断C、D,进而可得正确答案.【题目详解】对于(1):因为,均为正数,且,则有,当且仅当时等号成立,即的最大值为,故(1)正确;对于(2):因为,当且仅当时等号成立,即的最小值为,故(2)正确;对于(3):因为,所以,在上单调递减,无最小值,故(3)不正确;对于(4):,当且仅当时等号成立,即的最小值为,故(4)正确.故答案为:(1)(2)(4).三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解题分析】(1)证明平面,利用线面垂直的性质可证得结论成立;(2)设,以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,利用空间向量法可得出关于实数的等式,即可解得实数的值.【小问1详解】证明:因为,,则且,,平面,所以为直线与平面所成的线面角,即,,故,,,平面,平面,因此,.【小问2详解】解:设,由(1)可知且,,因为平面,,以点为坐标原点,、、所在直线分别为、、轴建立如下图所示的空间直角坐标系,则、、、、,设平面的法向量为,,,则,取,可得,设平面的法向量为,,,由,取,则,由已知可得,解得.当点为线段的中点时,二面角的平面角为锐角,合乎题意.综上所述,.18、(1),平均分为;(2).【解题分析】(1)利用频率直方图中所有矩形面积之和为可求得的值,将每个矩形底边的中点值乘以对应矩形的面积,将所得结果全部相加可得平均成绩;(2)分析可知所抽取的人中,成绩在内的有人,分别记为、、、,成绩在内的有人,分别记为、,列举出所有的基本事件,并确定所求事件所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率.【小问1详解】解:根据频率分布直方图得到,解得.这组样本数据平均数为.【小问2详解】解:根据频率分布直方图得到,分数在、内的频率分别为、,所以采用分层抽样的方法从样本中抽取的人,成绩在内的有人,分别记为、、、,成绩在内的有人,分别记为、,记“人中至少有人的分数高于分”为事件.则所有的基本事件有、、、、、、、、、、、、、、,共种.事件包含的基本事件有、、、、、、、、,共种,所以.19、(1)(2)【解题分析】(1)根据所给的条件分别计算后即可判断,再通过满足题意的求出通项;(2)由(1)可得,再通过错位相减法求和即可.【小问1详解】若选择条件1,则有,可得,不满足题意;若选择条件2,则有,可得,满足题意,故.【小问2详解】由(1)可得,所以………①因此有……….②①②可得,即,化简得.20、(1);(2).【解题分析】(1)根据等差数列前n项和求和公式求出首项和公差,进而求出通项公式;(2)结合(1)求出,再令得出数列的正数项和负数项,进而结合等差数列求和公式求得答案.【小问1详解】设等差数列的首项和公差分别为和,∴,解得:所以.【小问2详解】,所以.当;当,当,时,,当时,.综上:.21、(1)存在,为的中点,证明见解析;(2).【解题分析】(1)取的中点,的中点,连接,,,证明,由线面平行的判定定理即可求证;(2)先证明平面面,过点作于点,即可证明面,在中,利用面积公式求出即为四棱锥的高,再由棱锥的体积公式即可求解.【题目详解】(1)线段上存在点使得平面,为的中点.证明如下:如图取的中点,的中点,连接,,,因为,分别为,的中点,所以且因为且,所以,且,所以四边形为平行四边形,可得,因为面,面,所以平面;(2)过点作于点,因为平面,面,所以平面面,因为,面,平面面,所以面,因为,,所以,,所以,即,所以,即为四棱锥的高,所以.22、(1);(2);(3).【解题分析】(1)根据给定条件求出椭圆长半轴长a即可计算得解.(2)将代入椭圆的方程,再结合给定条件求出k值即可计算出AB的长.(3)设出直线PR的方程,再与椭圆的方程联立求出点P坐标,同理可得点Q坐标,计算PQ的斜率即可作答.【小问1详解】依题意,椭圆的半焦距c=1,而,解得,则,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论