河北省邯郸市永年县第一中学2024年数学高二上期末教学质量检测试题含解析_第1页
河北省邯郸市永年县第一中学2024年数学高二上期末教学质量检测试题含解析_第2页
河北省邯郸市永年县第一中学2024年数学高二上期末教学质量检测试题含解析_第3页
河北省邯郸市永年县第一中学2024年数学高二上期末教学质量检测试题含解析_第4页
河北省邯郸市永年县第一中学2024年数学高二上期末教学质量检测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省邯郸市永年县第一中学2024年数学高二上期末教学质量检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件2.设A=37+·35+·33+·3,B=·36+·34+·32+1,则A-B的值为()A.128 B.129C.47 D.03.已知,,若,则xy的最小值是()A. B.C. D.4.设函数,则()A.4 B.5C.6 D.75.我国古代数学论著中有如下叙述:“远望巍巍塔七层,红光点点倍加增,共灯二百五十四.”思如下:一座7层塔共挂了254盏灯,且相邻两层下一层所挂灯数是上一层所挂灯数的2倍.下列结论不正确的是()A.底层塔共挂了128盏灯B.顶层塔共挂了2盏灯C.最下面3层塔所挂灯的总盏数比最上面3层塔所挂灯的总盏数多200D.最下面3层塔所挂灯的总盏数是最上面3层塔所挂灯的总盏数的16倍6.已知双曲线:与椭圆:有相同的焦点,且一条渐近线方程为:,则双曲线的方程为()A. B.C. D.7.已知圆柱的底面半径是1,高是2,那么该圆柱的侧面积是()A.2 B.C. D.8.如图为学生做手工时画的椭圆(其中网格是由边长为1的正方形组成),它们的离心率分别为,则()A. B.C. D.9.如下图,边长为2的正方体中,O是正方体的中心,M,N,T分别是棱BC,,的中点,下列说法错误的是()A. B.C. D.到平面MON的距离为110.已知直线经过抛物线的焦点,且与该抛物线交于,两点,若满足,则直线的方程为()A. B.C. D.11.已知A,B,C三点不共线,O是平面ABC外一点,下列条件中能确定点M与点A,B,C一定共面的是A. B.C. D.12.设是函数的导函数,的图象如图所示,则的图象最有可能的是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知、是椭圆()长轴的两个端点,、是椭圆上关于轴对称的两点,直线,的斜率分别为,().若椭圆的离心率为,则的最小值为______14.已知数列满足:,,,则______15.数据6,8,9,10,7的方差为______16.已知数列是递增等比数列,,则数列的前项和等于.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图所示,在长方体ABCD-A1B1C1D1中,E,F分别是AB,A1C的中点,AD=AA1=2,AB=(1)求证:EF∥平面ADD1A1;(2)求平面EFD与平面DEC的夹角的余弦值;(3)在线段A1D1上是否存在点M,使得BM⊥平面EFD?若存在,求出的值;若不存在,请说明理由18.(12分)设函数.(1)若在点处的切线为,求a,b的值;(2)求的单调区间.19.(12分)在平面直角坐标系中,已知点,,点满足,记点的轨迹为.(1)求的方程;(2)已知,是经过圆上一点且与相切的两条直线,斜率分别为,,直线的斜率为,求证:为定值.20.(12分)设椭圆E:(a,b>0)过M(2,),N(,1)两点,O为坐标原点,(1)求椭圆E的方程;(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且?若存在,写出该圆的方程,并求|AB|的取值范围,若不存在说明理由.21.(12分)在直角坐标系中,以坐标原点O为圆心的圆与直线相切.(1)求圆O的方程;(2)设圆O交x轴于A,B两点,点P在圆O内,且是、的等比中项,求的取值范围.22.(10分)2021年国务院政府工作报告中指出,扎实做好碳达峰、碳中和各项工作,制定2030年前碳排放达峰行动方案,优化产业结构和能源结构.汽车行业是碳排放量比较大的行业之一,若现对CO2排放量超过130g/km的MI型新车进行惩罚(视为排放量超标),某检测单位对甲、乙两类MI型品牌的新车各抽取了5辆进行CO2排放量检测,记录如下(单位:g/km):甲80110120140150乙100120xy160经测算发现,乙类品牌车CO2排放量的均值为乙=120g/km.(1)求甲类品牌汽车的排放量的平均值及方差;(2)若乙类品牌汽车比甲类品牌汽车CO2的排放量稳定性好,求x的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】由三角函数的单调性直接判断是否能推出,反过来判断时,是否能推出.【题目详解】当时,利用正弦函数的单调性知;当时,或.综上可知“”是“”的充分不必要条件.故选:A【题目点拨】本题考查判断充分必要条件,三角函数性质,意在考查基本判断方法,属于基础题型.2、A【解题分析】先化简A-B,发现其结果为二项式展开式,然后计算即可【题目详解】A-B=37-·36+·35-·34+·33-·32+·3-1=故选A.【题目点拨】本题主要考查了二项式定理的运用,关键是通过化简能够发现其结果在形式上满足二项式展开式,然后计算出结果,属于基础题3、C【解题分析】对使用基本不等式,这样得到关于的不等式,解出xy的最小值【题目详解】因为,,由基本不等式得:,所以,解得:,当且仅当,即,时,等号成立故选:C4、D【解题分析】求出函数的导数,将x=1代入即可求得答案.【题目详解】,故,故选:D.5、C【解题分析】由题设易知是公比为2的等比数列,应用等比数列前n项和公式求,结合各选项的描述及等比数列通项公式、前n项和公式判断正误即可.【题目详解】从上往下记每层塔所挂灯的盏数为,则数列是公比为2的等比数列,且,解得,所以顶层塔共挂了2盏灯,B正确;底层塔共挂了盏灯,A正确最上面3层塔所挂灯总盏数为14,最下面3层塔所挂灯的总盏数为224,C不正确,D正确故选:C.6、B【解题分析】由渐近线方程,设出双曲线方程,结合与椭圆有相同的焦点,求出双曲线方程.【题目详解】∵双曲线:的一条渐近线方程为:∴设双曲线:∵双曲线与椭圆有相同的焦点∴,解得:∴双曲线的方程为.故选:B.7、D【解题分析】由圆柱的侧面积公式直接可得.【题目详解】故选:D8、D【解题分析】根据图知分别得到椭圆、、的半长轴和半短轴,再由求解比较即可.【题目详解】由图知椭圆的半长轴和半短轴分别为:,椭圆的半长轴和半短轴分别为:,椭圆的半长轴和半短轴分别为:,所以,,,所以,故选:D9、D【解题分析】建立空间直角坐标系,进而根据空间向量的坐标运算判断A,B,C;对D,算出平面MON的法向量,进而求出向量在该法向量方向上投影的绝对值,即为所求距离.【题目详解】如图建立空间直角坐标系,则.对A,,则,则A正确;对B,,则,则B正确;对C,,则C正确;对D,设平面MON的法向量为,则,取z=1,得,,所以到平面MON的距离为,则D错误.故选:D.10、C【解题分析】求出抛物线的焦点,设出直线方程,代入抛物线方程,运用韦达定理和向量坐标表示,解得,即可得出直线的方程.【题目详解】解:抛物线的焦点,设直线为,则,整理得,则,.由可得,代入上式即可得,所以,整理得:.故选:C.【题目点拨】本题考查直线和抛物线的位置关系,主要考查韦达定理和向量共线的坐标表示,考查运算能力,属于中档题.11、D【解题分析】首先利用坐标法,排除错误选项,然后对符合的选项验证存在使得,由此得出正确选项.【题目详解】不妨设.对于A选项,,由于的竖坐标,故不在平面上,故A选项错误.对于B选项,,由于的竖坐标,故不在平面上,故B选项错误.对于C选项,,由于的竖坐标,故不在平面上,故C选项错误.对于D选项,,由于的竖坐标为,故在平面上,也即四点共面.下面证明结论一定成立:由,得,即,故存在,使得成立,也即四点共面.故选:D.【题目点拨】本小题主要考查空间四点共面的证明方法,考查空间向量的线性运算,考查数形结合的数学思想方法,考查化归与转化的数学思想方法,属于中档题.12、C【解题分析】利用导函数的图象,判断导函数的符号,得到函数的单调性以及函数的极值点,然后判断选项即可【题目详解】解:由题意可知:和时,,函数是增函数,时,,函数是减函数;是函数的极大值点,是函数的极小值点;所以函数的图象只能是故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】设出点,,,的坐标,表示出直线,的斜率,作和后利用基本不等式求最值,利用离心率求得与的关系,则答案可求详解】解:设,,,,,,,,,,,当且仅当,即时等号成立,是椭圆长轴的两个端点,,是椭圆上关于轴对称的两点,,,即,的最小值为,椭圆的离心率为,,即,得,的最小值为故答案为:14、.【解题分析】运用累和法,结合等差数列前项和公式进行求解即可.【题目详解】因为,,所以当时,有,因此有:,即,当时,适合上式,所以,故答案为:.15、2【解题分析】首先求出数据的平均值,再应用方差公式求它们的方差.【题目详解】由题设,平均值为,∴方差.故答案为:2.16、【解题分析】由题意,,解得或者,而数列是递增的等比数列,所以,即,所以,因而数列的前项和,故答案为.考点:1.等比数列的性质;2.等比数列的前项和公式.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2);(3)不存在;理由见解析【解题分析】(1)连接AD1,A1D,交于点O,所以点O是A1D的中点,连接FO,根据判定定理证明四边形AEFO是平行四边形,进而得到线面平行;(2)建立坐标系,求出两个面的法向量,求得两个法向量的夹角的余弦值,进而得到二面角的夹角的余弦值;(3)假设在线段A1D1上存在一点M,使得BM⊥平面EFD,设出点M的坐标,由第二问得到平面EFD的一个法向量,判断出和该法向量不平行,故不存在满足题意的点M.【题目详解】(1)证明:连接AD1,A1D,交于点O,所以点O是A1D的中点,连接FO因为F是A1C的中点,所以OF∥CD,OF=CD因AE∥CD,AE=CD,所以OF∥AE,OF=AE所以四边形AEFO是平行四边形所以EF∥AO因为EF⊄平面ADD1A1,AO⊂平面ADD1A1,所以EF∥平面ADD1A1(2)以点A为坐标原点,直线AB,AD,AA1分别为x轴,y轴,z轴建立空间直角坐标系,因为点E,F分别是AB,A1C的中点,AD=AA1=2,AB=,所以B(,0,0),D(0,2,0),E,F所以=,=(0,1,1)设平面EFD的法向量为,则即令y=1,则z=-1,x=2所以,由题知,平面DEC的一个法向量为m=(0,0,1),所以cos<,>==所以平面EFD与平面DEC的夹角的余弦值是(3)假设在线段A1D1上存在一点M,使得BM⊥平面EFD设点M的坐标为(0,t,2)(0≤t≤2),则=(,t,2)因为平面EFD的一个法向量为,而与不平行,所以在线段A1D1上不存在点M,使得BM⊥平面EFD18、(1),;(2)答案见解析.【解题分析】(1)已知切线求方程参数,第一步求导,切点在曲线,切点在切线,切点处的导数值为切线斜率.(2)第一步定义域,第二步求导,第三步令导数大于或小于0,求解析,即可得到答案.【小问1详解】的定义域为,,因为在点处的切线为,所以,所以;所以把点代入得:.即a,b的值为:,.【小问2详解】由(1)知:.①当时,在上恒成立,所以在单调递减;②当时,令,解得:,列表得:x-0+单调递减极小值单调递增所以,时,的递减区间为,单增区间为.综上所述:当时,在单调递减;当时,的递减区间为,单增区间为.【题目点拨】导函数中得切线问题第一步求导,第二步列切点在曲线,切点在切线,切点处的导数值为切线斜率这三个方程,可解切线相关问题.19、(1);(2)证明见解析.【解题分析】(1)根据双曲线的定义可得答案;(2)设,过点的的切线方程为,联立此直线与双曲线的方程消元,然后由可得,即可得到,然后可证明.【小问1详解】因为,所以点的轨迹是以为焦点的双曲线的右支,所以,,所以,所以的方程为【小问2详解】设,则,设过点的切线方程为,联立可得由可得,所以所以20、(1);(2)存在,,.【解题分析】(1)根据椭圆E:(a,b>0)过M(2,),N(,1)两点,直接代入方程解方程组即可.(2)假设存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且,当切线斜率存在时,设该圆的切线方程为,联立,根据,结合韦达定理运算,同时满足,则存在,否则不存在,当切线斜率不存在时,验证即可;在该圆的方程存在时,利用弦长公式结合韦达定理得到求解.【题目详解】(1)因为椭圆E:(a,b>0)过M(2,),N(,1)两点,所以,解得,所以,所以椭圆E的方程为.(2)假设存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且,设该圆的切线方程为,联立得,则△=,即,,,要使,需使,即,所以,所以,又,所以,所以,即或,因为直线为圆心在原点的圆的一条切线,所以圆的半径为,,所以,则所求的圆为,此时圆的切线都满足或,而当切线的斜率不存在时切线为与椭圆的两个交点为或满足,综上,存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且.因为,所以,,①当时,,因为,所以,所以,所以,当且仅当时取”=”.②当时

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论