版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024学年河北张家口市高二数学第一学期期末教学质量检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设为坐标原点,直线与抛物线C:交于,两点,若,则的焦点坐标为()A. B.C. D.2.抛物线有如下光学性质:由其焦点射出的光线经抛物线反射后,沿平行于抛物线对称轴的方向射出;反之,平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点.已知抛物线,O为坐标原点,一条平行于x轴的光线从点射入,经过C上的点A反射后,再经C上另一点B反射后,沿直线射出,经过点N.下列说法正确的是()A.若,则 B.若,则平分C.若,则 D.若,延长AO交直线于点D,则D,B,N三点共线3.双曲线x21的渐近线方程是()A.y=±x B.y=±xC.y=± D.y=±2x4.某机构通过抽样调查,利用列联表和统计量研究患肺病是否与吸烟有关,计算得,经查对临界值表知,,现给出四个结论,其中正确的是()A.因为,故有90%的把握认为“患肺病与吸烟有关"B.因为,故有95%把握认为“患肺病与吸烟有关”C.因为,故有90%的把握认为“患肺病与吸烟无关”D.因为,故有95%的把握认为“患肺病与吸烟无关”5.某中学的校友会为感谢学校的教育之恩,准备在学校修建一座四角攒尖的思源亭如图它的上半部分的轮廓可近似看作一个正四棱锥,已知此正四棱锥的侧面与底面所成的二面角为30°,侧棱长为米,则以下说法不正确()A.底面边长为6米 B.体积为立方米C.侧面积为平方米 D.侧棱与底面所成角的正弦值为6.球O为三棱锥的外接球,和都是边长为的正三角形,平面PBC平面ABC,则球的表面积为()A. B.C. D.7.若,则下列不等式①;②;③;④中,正确的不等式有()A.0个 B.1个C.2个 D.3个8.已知等比数列的首项为1,公比为2,则=()A. B.C. D.9.直线过点且与双曲线仅有一个公共点,则这样的直线有()A.1条 B.2条C.3条 D.4条10.抛物线的焦点到准线的距离是A.2 B.4C. D.11.如果,那么下面一定成立的是()A. B.C. D.12.有6本不同的书,按下列方式进行分配,其中分配种数正确的是()A.分给甲、乙、丙三人,每人各2本,有15种分法;B.分给甲、乙、丙三人中,一人4本,另两人各1本,有180种分法;C.分给甲乙每人各2本,分给丙丁每人各1本,共有90种分法;D.分给甲乙丙丁四人,有两人各2本,另两人各1本,有1080种分法;二、填空题:本题共4小题,每小题5分,共20分。13.曲线在x=1处的切线方程为__________.14.若双曲线的一条渐近线被圆所截得的弦长为2,则该双曲线的实轴长为______.15.希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名.他发现:“平面内到两个定点A,B的距离之比为定值λ(λ≠1)的点的轨迹是圆”.后来,人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆.已知在平面直角坐标系xOy中,A(-2,1),B(-2,4),点P是满足的阿氏圆上的任一点,则该阿氏圆的方程为___________________;若点Q为抛物线E:y2=4x上的动点,Q在直线x=-1上的射影为H,则的最小值为___________.16.若,且,则_____________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列是等差数列,其前n项和为,,,数列满足(且),.(1)求和的通项公式;(2)求数列的前n项和.18.(12分)如图,在正方体中,是棱的中点.(1)试判断直线与平面的位置关系,并说明理由;(2)求证:直线面.19.(12分)已知p:方程所表示的曲线为焦点在x轴上的椭圆;q:当时,函数恒成立.(1)若p为真,求实数t的取值范围;(2)若为假命题,且为真命题,求实数t的取值范围20.(12分)如图,在四棱锥中,底面为直角梯形,底面分别为的中点,(1)求证:平面平面;(2)求二面角的大小21.(12分)已知函数.(1)当时,不等式恒成立,求实数的取值范围;(2)解关于的不等式:.22.(10分)已知函数,.(1)当时,求函数在区间上的最大值;(2)当时,求函数的极值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】根据题中所给的条件,结合抛物线的对称性,可知,从而可以确定出点的坐标,代入方程求得的值,进而求得其焦点坐标,得到结果.【题目详解】因为直线与抛物线交于两点,且,根据抛物线的对称性可以确定,所以,代入抛物线方程,求得,所以其焦点坐标为,故选:B.【题目点拨】该题考查的是有关圆锥曲线的问题,涉及到的知识点有直线与抛物线的交点,抛物线的对称性,点在抛物线上的条件,抛物线的焦点坐标,属于简单题目.2、D【解题分析】根据求出焦点为、点坐标,可得直线的方程与抛物线方程联立得点坐标,由两点间的距离公式求出可判断AC;时可得,.由可判断B;求出点坐标可判断D.【题目详解】如图,若,则,C的焦点为,因为,所以,直线的方程为,整理得,与抛物线方程联立得,解得或,所以,所以,选项A错误;时,因为,所以.又,,所以不平分,选项B不正确;若,则,C的焦点为,因为,所以,直线的方程为,所以,所以,选项C错误;若,则,C的焦点为,因为,所以,直线的方程为,所以,直线的方程为,延长交直线于点D,所以则,所以D,B,N三点共线,选项D正确;故选:D.3、D【解题分析】根据双曲线渐近线定义即可求解.【题目详解】双曲线的方程为,双曲线的渐近线方程为,故选:D【题目点拨】本题主要考查了双曲线的简单几何性质,属于容易题.4、A【解题分析】根据给定条件利用独立性检验的知识直接判断作答.【题目详解】因,且,由临界值表知,,,所以有90%的把握认为“患肺病与吸烟有关”,则A正确,C不正确;.因临界值3.841>3.305,则不能确定有95%的把握认为“患肺病与吸烟有关”,也不能确定有95%的把握认为“患肺病与吸烟无关”,即B,D都不正确.故选:A5、D【解题分析】连接底面正方形的对角线交于点,连接,则为该正四棱锥的高,即平面,取的中点,连接,则的大小为侧面与底面所成,设正方形的边长为,求出该正四棱锥的底面边长,斜高和高,然后对选项进行逐一判断即可.【题目详解】连接底面正方形的对角线交于点,连接则为该正四棱锥的高,即平面取的中点,连接,由正四棱锥的性质,可得由分别为的中点,所以,则所以为二面角的平面角,由条件可得设正方形的边长为,则,又则,解得故选项A正确.所以,则该正四棱锥的体积为,故选项B正确.该正四棱锥的侧面积为,故选项C正确.由题意为侧棱与底面所成角,则,故选项D不正确.故选:D6、B【解题分析】取中点为T,以及的外心为,的外心为,依据平面平面可知为正方形,然后计算外接球半径,最后根据球表面积公式计算.【题目详解】设中点为T,的外心为,的外心为,如图由和均为边长为的正三角形则和的外接圆半径为,又因为平面PBC平面ABC,所以平面,可知且,过分别作平面、平面的垂线相交于点即为三棱锥的外接球的球心,且四边形是边长为的正方形,所以外接球半径,则球的表面积为,故选:B7、C【解题分析】由条件,可得,利用不等式的性质和基本不等式可判断①、②、③、④中不等式的正误,得出答案.【题目详解】因为,所以.因此,且,且②、③不正确.所以,所以①正确,由得、均为正数,所以,(由条件,所以等号不成立),所以④正确.故选:C.8、D【解题分析】数列是首项为1,公比为4的等比数列,然后可算出答案.【题目详解】因为等比数列的首项为1,公比为2,所以数列是首项为1,公比为4的等比数列所以故选:D9、C【解题分析】根据直线的斜率存在与不存在,分类讨论,结合双曲线的渐近线的性质,即可求解.【题目详解】当直线的斜率不存在时,直线过双曲线的右顶点,方程为,满足题意;当直线的斜率存在时,若直线与两渐近线平行,也能满足与双曲线有且仅有一个公共点.综上可得,满足条件的直线共有3条.故选:C.【题目点拨】本题主要考查了直线与双曲线的位置关系,以及双曲线的渐近线的性质,其中解答中忽视斜率不存在的情况是解答的一个易错点,着重考查了分析问题和解答问题的能力,以及分类讨论思想的应用,属于基础题.10、D【解题分析】因为抛物线方程可化为,所以抛物线的焦点到准线的距离是,故选D.考点:1、抛物线的标准方程;2、抛物线的几何性质.11、C【解题分析】根据不等式的基本性质,以及特例法和作差比较法,逐项计算,即可求解.【题目详解】对于A中,当时,,所以不正确;对于B中,因为,根据不等式的性质,可得,对于C中,由,可得可得,所以,所以正确;对于D中,由,可得,则,所以,所以不正确.故选:C.12、D【解题分析】根据题意,分别按照选项说法列式计算验证即可做出判断.【题目详解】选项A,6本不同的书分给甲、乙、丙三人,每人各2本,有种分配方法,故该选项错误;选项B,6本不同的书分给甲、乙、丙三人,一人4本,另两人各1本,先将6本书分成4-1-1的3组,再将三组分给甲乙丙三人,有种分配方法,故该选项错误;选项C,6本不同的书分给甲乙每人各2本,有种方法,其余分给丙丁每人各1本,有种方法,所以不同的分配方法有种,故该选项错误;选项D,先将6本书分为2-2-1-14组,再将4组分给甲乙丙丁4人,有种方法,故该选项正确.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】根据导数的几何意义求切线方程的斜率并求出,再由点斜式写出切线方程即可.【题目详解】由题设,,则,而,所以在x=1处的切线方程为,即.故答案为:.14、2【解题分析】求得双曲线的一条渐近线方程,求得圆心和半径,运用点到直线的距离公式和弦长公式,可得a,b的关系,即可得到的值【题目详解】一渐近线x+ay=0,被圆(x-2)2+y2=4所截弦长为2,所以圆心到直线距为,即,a=1.所以双曲线的实轴长为2.故答案为:15、①.②.【解题分析】(1)利用直译法直接求出P点的轨迹(2)先利用阿氏圆的定义将转化为P点到另一个定点的距离,然后结合抛物线的定义容易求得的最小值【题目详解】设P(x,y),由阿氏圆的定义可得即化简得则设则由抛物线的定义可得当且仅当四点共线时取等号,的最小值为故答案为:【题目点拨】本题考查了抛物线的定义及几何性质,同时考查了阿氏圆定义的应用.还考查了学生利用转化思想、方程思想等思想方法解题的能力.难度较大16、【解题分析】由,可得,,,从而利用换底公式及对数的运算性质即可求解.【题目详解】解:因为,所以,,,又,所以,所以,所以,故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),;(2).【解题分析】(1)根据,列方程组即可求解数列的通项公式,根据可求数列的通项公式;(2)化简,利用裂项相消法求该数列前n项和.【小问1详解】设等差数列公差为d,∵,∴,∵公差,∴.由得,即,∴数列是首项为,公比为2的等比数列,∴;【小问2详解】∵,∴,.18、(1)平面AEC,理由见解析(2)证明见解析【解题分析】(1)以线面平行的判定定理去证明直线与平面平行即可;(2)以线面垂直的判定定理去证明直线面即可.【小问1详解】连接BD,设,连接OE.在中,O、E分别是BD、的中点,则.因为直线OE在平面AEC上,而直线不在平面AEC上,根据直线与平面平行的判定定理,得到直线平面AEC.【小问2详解】正方体中,故,又,故同理故,又,故又根据直线与平面垂直的判定定理,得直线平面.19、(1)(2)【解题分析】(1)由给定条件结合椭圆标准方程的特征列不等式求解作答.(2)求命题q真时的t值范围,再借助“或”联结的命题为真命题求解作答.【小问1详解】因方程所表示的曲线为焦点在x轴上的椭圆,则有,解得,所以实数t的取值范围是.【小问2详解】,则有,当且仅当,即时取“=”,即,因当时,函数恒成立,则,解得,命题q为真命题有,因为假命题,且为真命题,则与一真一假,当p真q假时,,当p假q真时,,所以实数t的取值范围是.20、(1)证明见解析(2)【解题分析】(1)依题意可得平行四边形是矩形,即可得到,再由及面面垂直的性质定理得到平面,从而得到,即可得到平面,从而得证;(2)建立空间直角坐标系,利用空间向量法求出二面角的余弦值,即可得解;【小问1详解】证明:因为为的中点,,所以,又,所以四边形为平行四边形,因为,所以平行四边形是矩形,所以,因为,所以,又因为平面平面,平面平面面,所以平面,因为面,所以,又因为,平面,所以平面,因
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 土地搞标居间合同范本
- 塔读签约签约合同范本
- 园林种子购销合同范本
- 家庭鱼池转让合同范本
- 外贸合同转让合同范本
- 噪声治理施工合同范本
- 增城电梯办证合同范本
- 复核咨询委托合同范本
- 夜场小吃采购合同范本
- 外贸佣金协议合同范本
- 2025年高考英语新课标I卷真题及答案
- 2025云南昆明市五华区人民法院招聘合同制司法辅助人员及合同制司法警务辅助人员13人备考考试题库附答案解析
- 2025年院级住培师资培训考试试题(含答案)
- 行政自学考试试题及答案
- 2025年湖南邵阳武冈市城乡供水有限公司招聘5人笔试历年参考题库附带答案详解(3卷合一)
- 烟草行业新员工入职培训
- 审计咨询服务整体方案
- GB/T 31971.3-2025船舶与海上技术海上环境保护:撇油器性能试验第3部分:高黏度油
- 《土木工程智能施工》课件 第3章 土方作业辅助工程-土壁支护2
- 艺人独家经纪合同(标准版)
- 福建省银行业专业人员初级职业资格考试(银行业法律法规与综合能力)试题及答案(2025年)
评论
0/150
提交评论