版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024学年浙江省钱清中学高二数学第一学期期末达标检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知动点在直线上,过点作圆的切线,切点为,则线段的长度的最小值为()A. B.4C. D.2.方程表示的曲线是()A.一个椭圆和一个点 B.一个双曲线的右支和一条直线C.一个椭圆一部分和一条直线 D.一个椭圆3.已知圆:的面积被直线平分,圆:,则圆与圆的位置关系是()A.相离 B.相交C.内切 D.外切4.已知抛物线的焦点为,抛物线上的两点,均在第一象限,且,,,则直线的斜率为()A.1 B.C. D.5.下列命题中的假命题是()A.,B.存在四边相等的四边形不是正方形C.“存在实数,使”的否定是“不存在实数,使”D.若且,则,至少有一个大于6.设F是双曲线的左焦点,,P是双曲线右支上的动点,则的最小值为()A.5 B.C. D.97.若是真命题,是假命题,则A.是真命题 B.是假命题C.是真命题 D.是真命题8.抛物线的焦点到准线的距离为()A. B.C. D.9.在平面上给定相异两点,设点在同一平面上且满足,当且时,点的轨迹是一个圆,这个轨迹最先由古希腊数学家阿波罗尼斯发现,故我们称这个圆为阿波罗尼斯圆.现有双曲线,为双曲线的左、右顶点,为双曲线的虚轴端点,动点满足,面积的最大值为,面积的最小值为,则双曲线的离心率为()A. B.C. D.10.设F为双曲线C:(a>0,b>0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P、Q两点.若|PQ|=|OF|,则C的离心率为A. B.C.2 D.11.正四棱锥中,,则直线与平面所成角的正弦值为A. B.C. D.12.正数a,b满足,若不等式对任意实数x恒成立,则实数m的取值范围是A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数在R上连续且可导,为偶函数且,其导函数满足,则不等式的解集为___.14.某个弹簧振子在振动过程中的位移y(单位:mm)与时间t(单位:s)之间的关系为,则当s时,弹簧振子的瞬时速度为_________mm/s.15.若向量,且夹角的余弦值为________16.已知直线与直线平行,则实数m的值为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)命题存在,使得;命题对任意的,都有(1)若命题p为真时,求实数a的取值范围;若命题q为假时,求实数a的取值范围;(2)如果命题为真命题,命题为假命题,求实数a的取值范围18.(12分)如图长方体中,,,点为的中点.(1)求证:平面;(2)求证:平面;(3)求二面角的余弦值.19.(12分)新疆长绒棉品质优良,纤维柔长,被世人誉为“棉中极品”,产于我国新疆的吐鲁番盆地、塔里木盆地的阿克苏、喀什等地.棉花的纤维长度是评价棉花质量的重要指标之一,在新疆某地区成熟的长绒棉中随机抽测了一批棉花的纤维长度(单位:mm),将样本数据制成频率分布直方图如下:(1)求的值;(2)估计该样本数据的平均数(同一组中的数据用该组数据区间的中点值为代表);(3)根据棉花纤维长度将棉花等级划分如下:纤维长度小于30mm大于等于30mm,小于40mm大于等于40mm等级二等品一等品特等品从该地区成熟的棉花中随机抽测两根棉花的纤维长度,用样本的频率估计概率,求至少有一根棉花纤维长度达到特等品的概率.20.(12分)已知数列是公差不为0的等差数列,数列是公比为2的等比数列,是,的等比中项,,.(1)求数列,的通项公式;(2)求数列的前项和.21.(12分)如图,直角梯形AEFB与菱形ABCD所在平面互相垂直,,,,,,M为AD中点.(1)证明:直线面DEF;(2)求二面角的余弦值.22.(10分)给定函数.(1)判断函数f(x)的单调性,并求出f(x)的极值;(2)画出函数f(x)的大致图象,无须说明理由(要求:坐标系中要标出关键点);(3)求出方程的解的个数.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】求出的最小值,由切线长公式可结论【题目详解】解:由,得最小时,最小,而,所以故选:A.2、C【解题分析】由可得,或,再由方程判断所表示的曲线.【题目详解】由可得,或,即或,则该方程表示一个椭圆的一部分和一条直线.故选:C3、D【解题分析】根据题意,圆:的面积被直线平分,即直线经过圆的圆心,由此求出两圆的圆心和半径,然后判断两个圆的位置关系即可【题目详解】根据题意,圆:,即,其圆心为,半径,圆:的面积被直线平分,即直线经过圆的圆心,则有1−m+1=0,解可得m=2,即所以圆的圆心(1,−1),半径为1,圆的标准方程是,圆心(−2,3),半径为4,其圆心距,所以两个圆外切,故选:D.4、C【解题分析】作垂直准线于,垂直准线于,作于,结合抛物线定义得出斜率为可求.【题目详解】如图:作垂直准线于,垂直准线于,作于,因为,,,由抛物线的定义可知:,,,所以,直线斜率为:.故选:C.5、C【解题分析】利用简易逻辑的知识逐一判断即可.【题目详解】,故A正确;菱形的四边相等,但不一定是正方形,故B正确;“存在实数,使”的否定是“对任意的实数都有”,故C错误;假设且,则,与矛盾,故D正确;故选:C6、B【解题分析】由双曲线的的定义可得,于是将问题转化为求的最小值,由得出答案.【题目详解】设双曲线的由焦点为,且点A在双曲线的两支之间.由双曲线的定义可得,即所以当且仅当三点共线时,取得等号.故选:B7、D【解题分析】因为是真命题,是假命题,所以是假命题,选项A错误,是真命题,选项B错误,是假命题,选项C错误,是真命题,选项D正确,故选D.考点:真值表的应用.8、B【解题分析】根据抛物线的几何性质可得选项.【题目详解】由得,所以,所以抛物线的焦点到准线的距离为1,故选:B.9、C【解题分析】先求动点的轨迹方程,再根据面积的最大值求得,根据的面积最小值求,由此可求双曲线的离心率.【题目详解】设,,,依题意得,即,两边平方化简得,所以动点的轨迹是圆心为,半径的圆,当位于圆的最高点时的面积最大,所以,解得;当位于圆的最左端时的面积最小,所以,解得,故双曲线的离心率为.故选:C.10、A【解题分析】准确画图,由图形对称性得出P点坐标,代入圆的方程得到c与a关系,可求双曲线的离心率【题目详解】设与轴交于点,由对称性可知轴,又,为以为直径的圆的半径,为圆心,又点在圆上,,即,故选A【题目点拨】本题为圆锥曲线离心率的求解,难度适中,审题时注意半径还是直径,优先考虑几何法,避免代数法从头至尾,运算繁琐,准确率大大降低,双曲线离心率问题是圆锥曲线中的重点问题,需强化练习,才能在解决此类问题时事半功倍,信手拈来11、C【解题分析】建立合适的空间直角坐标系,求出和平面的法向量,直线与平面所成角的正弦值即为与的夹角的余弦值的绝对值,利用夹角公式求出即可.【题目详解】建立如图所示的空间直角坐标系.有图知,由题得、、、.,,.设平面的一个法向量,则,,令,得,,.设直线与平面所成的角为,则.故选:C.【题目点拨】本题考查线面角的求解,利用向量法可简化分析过程,直接用计算的方式解决问题,是基础题.12、A【解题分析】利用基本不等式求得的最小值,把问题转化为恒成立的类型,求解的最大值即可.【题目详解】,,且a,b为正数,,当且仅当,即时,,若不等式对任意实数x恒成立,则对任意实数x恒成立,即对任意实数x恒成立,,,故选:A【题目点拨】本题主要考查了恒成立问题,基本不等式求最值,二次函数求最值,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】由已知条件可得图象关于对称,在上递增,在上递减,然后分四种情况讨论求解即可【题目详解】因为为偶函数,所以的图象关于轴对称,所以的图象关于对称,因为,所以当时,,当时,,所以在上递增,在上递减,由,得,或,或,或,解得,或,或,或,综上,,所以等式的解集为故答案为:14、0【解题分析】根据题意得,进而根据导数几何意义求解时的导函数值即可得答案.【题目详解】解:因为,所以求导得,所以根据导数的几何意义得该振子在时的瞬时速度为,故答案为:.15、【解题分析】根据求解即可.【题目详解】,故答案为:【题目点拨】本题主要考查了求空间中两个向量的夹角,属于基础题.16、【解题分析】由两直线平行的判定可得求解即可,注意验证是否出现直线重合的情况.【题目详解】由题设,,解得,经检验满足题设.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)p为真时或,q为假时;(2){或}.【解题分析】(1)p为真应用判别式求参数范围;q为真,根据恒成立求参数范围,再判断q为假对应的参数范围.(2)由题设易得p、q一真一假,讨论p、q的真假,结合(1)的结果求a的取值范围【小问1详解】若p真,则有实数根,∴,解得或若q为真,则,即故q为假时,实数a的取值范围为【小问2详解】∵命题真命题,命题为假命题,∴p,q一真一假,当p真q假时,,可得当p假q真时,,可得综上,实数a取值范围为或.18、(1)见解析(2)见解析(3)【解题分析】(1)作辅助线,由中位线定理证明,再由线面平行的判定定理证明即可;(2)连接,由勾股定理证明,,再结合线面垂直的判定定理证明即可;(3)建立空间直角坐标系,利用向量法求面面角的余弦值即可.【题目详解】(1)连接交与点,连接四边形为正方形,点为的中点又点为的中点,平面,平面平面(2)连接由勾股定理可知,,则同理可证,平面平面(3)建立如下图所示的空间直角坐标系显然平面的法向量即为平面的法向量,不妨设为由(2)可知平面,即平面的法向量为又二面角是钝角二面角的余弦值为【题目点拨】关键点睛:在第一问中,关键是利用中位线定理找到线线平行,再由定义证明线面平行;在第二问中,关键是利用勾股定理证明线线垂直,从而得出线面垂直;在第三问中,关键是建立坐标系,利用向量法求面面角的余弦值.19、(1)(2)(3)【解题分析】(1)由频率分布直方图中所有矩形的面积之和为1,可求出答案.(2)根据平均数的公式可得到答案.(3)先求出一根棉花纤维长度达到特等品的概率,然后分恰好有一根和两根棉花小问1详解】由解得【小问2详解】该样本数据的平均数为:【小问3详解】由题意一根棉花纤维长度达到特等品的概率为:两根棉花中至少有一根棉花纤维长度达到特等品的概率20、(1)(2)【解题分析】(1)根据是,的等比中项,且,,由求解;(2)由(1)得到,再利用错位相减法求解.【小问1详解】解:因为是,的等比中项,且,,所以,解得,,所以;【小问2详解】由(1)得,所以,则,两式相减得,,,所以.21、(1)证明见解析(2)【解题分析】(1)由平面平面ABCD,可得平面ABCD,连接BD,可得,以为原点,为轴,竖直向上为轴建立空间直角坐标系,利用向量法计算与平面的法向量的数量积为0即可得证;(2)分别计算出平面和平面的法向量,然后利用向量夹角公式即可求解.【小问1详解】证明:因为平面平面ABCD,平面平面ABCD,且,所以平面ABCD,连接BD,则等边三角形,所以,以为原点,为轴,竖直向上为轴建立如图所示的空间直角坐标系,则,设为平面的法向量,因为,则有,取,又因为,所以,因为平面,所以平面;【小问2详解】解:分别设为平面和平面的法向量,因为,则有,取,因,则有,取,所以,由图可知二面角为锐二面角,所以二面角的余弦值为.22、(1)函数的减区间为,增区间为,有极小值,无极大值;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 茶叶栽培与制作培训制度
- 餐饮岗前培训管理制度
- 戏曲培训室制度设计
- 企业培训机构管理制度
- 巴基斯坦飞行员培训制度
- 老年助餐点人员培训制度
- 党外人士学习培训制度
- 培训机构教师请假规章制度
- 儿童培训机构规章制度
- 会务培训流程管理制度
- TCFLP0030-2021国有企业网上商城采购交易操作规范
- 电信营业厅运营方案策划书(2篇)
- JBT 14850-2024 塔式起重机支护系统(正式版)
- 专精特新申报材料范本
- 牵引供电系统短路计算-三相对称短路计算(高铁牵引供电系统)
- (完整版)第一性原理
- 安全技术劳动保护措施管理规定
- 学习主题班会课件 高三寒假攻略
- 高一年级主任工作总结(4篇)
- 论高级管理人员应具备的财务知识
- GB/T 7354-2003局部放电测量
评论
0/150
提交评论