高中数学苏教版2统计案例1.1独立性检验苏教版选修独立性检验(29张)_第1页
高中数学苏教版2统计案例1.1独立性检验苏教版选修独立性检验(29张)_第2页
高中数学苏教版2统计案例1.1独立性检验苏教版选修独立性检验(29张)_第3页
高中数学苏教版2统计案例1.1独立性检验苏教版选修独立性检验(29张)_第4页
高中数学苏教版2统计案例1.1独立性检验苏教版选修独立性检验(29张)_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1.1独立性检验第1章统计案例学习目标1.了解2×2列联表的意义.2.了解统计量χ2的意义.3.通过对典型案例分析,了解独立性检验的基本思想和方法.问题导学达标检测题型探究内容索引问题导学思考山东省教育厅大力推行素质教育,增加了高中生的课外活动时间,某校调查了学生的课外活动方式,结果整理成下表:

体育文娱合计男生210230440女生60290350合计270520790如何判定“喜欢体育还是文娱与性别是否有联系”?答案可通过表格与图形进行直观分析,也可通过统计分析定量判断.知识点一2×2列联表梳理(1)2×2列联表的定义对于两个研究对象Ⅰ和Ⅱ,Ⅰ有两类取值,即类A和类B;Ⅱ也有两类取值,即类1和类2.我们得到如下列联表所示的抽样数据:

类1类2合计Ⅰ类Aab______类Bcd______合计__________a+b+c+da+bc+da+cb+d(2)χ2统计量的求法独立性检验的概念用χ2统计量研究两变量是否有关的方法称为独立性检验.知识点二独立性检验1.独立性检验的步骤要判断“Ⅰ与Ⅱ有关系”,可按下面的步骤进行:(1)提出假设H0:;(2)根据2×2列联表及χ2公式,计算的值;(3)查对临界值,作出判断.其中临界值如表所示:Ⅰ与Ⅱ没有关系χ2≥x0知识点三独立性检验的步骤P(χ2≥x0)0.500.400.250.150.100.050.0250.0100.0050.001x00.4550.7081.3232.0722.7063.8415.0246.6357.87910.828表示在H0成立的情况下,事件“”发生的概率.χ22.推断依据(1)若χ2>10.828,则有99.9%的把握认为“Ⅰ与Ⅱ有关系”;(2)若χ2>6.635,则有99%的把握认为“Ⅰ与Ⅱ有关系”;(3)若χ2>2.706,则有90%的把握认为“Ⅰ与Ⅱ有关系”;(4)若χ2≤2.706,则认为没有充分的证据显示“Ⅰ与Ⅱ有关系”,但也不能作出结论“H0成立”,即不能认为Ⅰ与Ⅱ没有关系.[思考辨析判断正误]1.列联表中的数据是两个分类变量的频数.(

)2.事件A与B的独立性检验无关,即两个事件互不影响.(

)3.χ2的大小是判断事件A与B是否相关的统计量.(

)×√√题型探究例1在一项有关医疗保健的社会调查中,发现调查的男性为530人,女性为670人,其中男性中喜欢吃甜食的为117人,女性中喜欢吃甜食的为492人,请作出性别与喜欢吃甜食的人数列联表.解答类型一2×2列联表解作列联表如下:

喜欢甜食不喜欢甜食合计男117413530女492178670合计6095911200反思与感悟分清类别是作列联表的关键步骤.表中排成两行两列的数据是调查统计得来的结果.跟踪训练1

(1)下面是2×2列联表:解析答案

y1y2合计x1a2173x222527合计b46100则表中a,b的值分别为________.52

54解析∵a+21=73,∴a=52.又∵a+2=b,∴b=54.(2)某学校对高三学生作一项调查后发现:在平时的模拟考试中,性格内向的426名学生中有332名在考前心情紧张,性格外向的594名学生中有213名在考前心情紧张.作出2×2列联表.解答解作列联表如下:

性格内向性格外向合计考前心情紧张332213545考前心情不紧张94381475合计4265941020解答例2对196个接受心脏搭桥手术的病人和196个接受血管清障手术的病人进行三年的跟踪研究,调查他们是否又发作过心脏病,调查结果如下表所示.试根据上述数据比较这两种手术对病人又发作过心脏病的影响有没有差别.类型二由χ2进行独立性检验又发作过心脏病未发作过心脏病合计心脏搭桥手术39157196血管清障手术29167196合计68324392解假设病人又发作过心脏病与做过心脏搭桥手术还是血管清障手术没有关系,由表中数据得a=39,b=157,c=29,d=167,a+b=196,c+d=196,a+c=68,b+d=324,n=392,因为χ2≈1.779<2.706,所以不能得出病人又发作过心脏病与做过心脏搭桥手术还是血管清障手术有关系的结论,即这两种手术对病人又发作过心脏病的影响没有差别.反思与感悟独立性检验的关注点:在2×2列联表中,如果两个分类变量没有关系,则应满足ad-bc≈0,因此|ad-bc|越小,关系越弱;|ad-bc|越大,关系越强.跟踪训练2某省进行高中新课程改革已经四年了,为了解教师对新课程教学模式的使用情况,某一教育机构对某学校的教师关于新课程教学模式的使用情况进行了问卷调查,共调查了50人,其中有老教师20人,青年教师30人.老教师对新课程教学模式赞同的有10人,不赞同的有10人;青年教师对新课程教学模式赞同的有24人,不赞同的有6人.(1)根据以上数据建立一个2×2列联表;解2×2列联表如下所示:

赞同不赞同合计老教师101020青年教师24630合计341650解答(2)判断是否有99%的把握说明对新课程教学模式的赞同情况与教师年龄有关系.解假设“对新课程教学模式的赞同情况与教师年龄无关”,解答所以没有99%的把握认为对新课程教学模式的赞同情况与教师年龄有关.达标检测1.在一项打鼾与患心脏病的调查中,共调查了1671人,经过计算χ2=27.63,根据这一数据分析,我们有理由认为打鼾与患心脏病是______的.(填有关或无关)答案12345有关答案2.为了考察长头发与女性头晕是否有关系,随机抽查了301名女性,得到如下所示的列联表,试根据表格中已有数据填空.12345

经常头晕很少头晕合计长发35①121短发37143②合计72③④则空格中的数据分别为:①____;②____;③____;④____.86

180

229

3013.在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是___.(填序号)①若χ2>6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;②从独立性检验可知,有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能患有肺病;③若从χ2与临界值的比较中得出有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误.12345答案解析③解析对于①,99%的把握是通过大量的试验得出的结论,这100个吸烟的人中可能全患肺病也可能都不患,是随机的,所以①错;对于②,某人吸烟只能说其患病的可能性较大,并不一定患病;③的解释是正确的.12345答案解析4.某科研机构为了研究中年人秃发与患心脏病是否有关,随机调查了一些中年人的情况,具体数据如表:12345

患心脏病无心脏病合计秃发20300320不秃发5450455合计25750775则断定秃发与患心脏病有关系,那么这种判断出错的可能性为_____.0.01解析因为χ2>6.635,所以有99%的把握说秃发与患心脏病有关,故这种判断出错的可能性有1-0.99=0.01.123455.根据下表计算:答案解析

不看电视看电视合计男3785122女35143178合计72228300χ2≈_______

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论