版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024学年江苏省连云港市东海县数学高三上期末教学质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若函数在时取得极值,则()A. B. C. D.2.已知函数,方程有四个不同的根,记最大的根的所有取值为集合,则“函数有两个零点”是“”的().A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.一个由两个圆柱组合而成的密闭容器内装有部分液体,小圆柱底面半径为,大圆柱底面半径为,如图1放置容器时,液面以上空余部分的高为,如图2放置容器时,液面以上空余部分的高为,则()A. B. C. D.4.已知双曲线的一个焦点为,且与双曲线的渐近线相同,则双曲线的标准方程为()A. B. C. D.5.复数的模为().A. B.1 C.2 D.6.已知向量,,且,则()A. B. C.1 D.27.在条件下,目标函数的最大值为40,则的最小值是()A. B. C. D.28.在中,,,,则在方向上的投影是()A.4 B.3 C.-4 D.-39.如图,长方体中,,,点T在棱上,若平面.则()A.1 B. C.2 D.10.已知函数,且),则“在上是单调函数”是“”的()A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件11.已知数列对任意的有成立,若,则等于()A. B. C. D.12.函数(其中是自然对数的底数)的大致图像为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知在等差数列中,,,前n项和为,则________.14.如图,在三棱锥A﹣BCD中,点E在BD上,EA=EB=EC=ED,BDCD,△ACD为正三角形,点M,N分别在AE,CD上运动(不含端点),且AM=CN,则当四面体C﹣EMN的体积取得最大值时,三棱锥A﹣BCD的外接球的表面积为_____.15.过直线上一点作圆的两条切线,切点分别为,,则的最小值是______.16.若实数满足不等式组,则的最小值是___三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)若曲线在处的切线为,试求实数,的值;(2)当时,若有两个极值点,,且,,若不等式恒成立,试求实数m的取值范围.18.(12分)已知函数,设为的导数,.(1)求,;(2)猜想的表达式,并证明你的结论.19.(12分)已知函数.(1)当时,解关于的不等式;(2)若对任意,都存在,使得不等式成立,求实数的取值范围.20.(12分)已知数列的通项,数列为等比数列,且,,成等差数列.(1)求数列的通项;(2)设,求数列的前项和.21.(12分)设函数.(1)若恒成立,求整数的最大值;(2)求证:.22.(10分)已知曲线的参数方程为为参数),以直角坐标系原点为极点,以轴正半轴为极轴并取相同的单位长度建立极坐标系.(1)求曲线的极坐标方程,并说明其表示什么轨迹;(2)若直线的极坐标方程为,求曲线上的点到直线的最大距离.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
对函数求导,根据函数在时取得极值,得到,即可求出结果.【题目详解】因为,所以,又函数在时取得极值,所以,解得.故选D【题目点拨】本题主要考查导数的应用,根据函数的极值求参数的问题,属于常考题型.2、A【解题分析】
作出函数的图象,得到,把函数有零点转化为与在(2,4]上有交点,利用导数求出切线斜率,即可求得的取值范围,再根据充分、必要条件的定义即可判断.【题目详解】作出函数的图象如图,由图可知,,函数有2个零点,即有两个不同的根,也就是与在上有2个交点,则的最小值为;设过原点的直线与的切点为,斜率为,则切线方程为,把代入,可得,即,∴切线斜率为,∴k的取值范围是,∴函数有两个零点”是“”的充分不必要条件,故选A.【题目点拨】本题主要考查了函数零点的判定,考查数学转化思想方法与数形结合的解题思想方法,训练了利用导数研究过曲线上某点处的切线方程,试题有一定的综合性,属于中档题.3、B【解题分析】
根据空余部分体积相等列出等式即可求解.【题目详解】在图1中,液面以上空余部分的体积为;在图2中,液面以上空余部分的体积为.因为,所以.故选:B【题目点拨】本题考查圆柱的体积,属于基础题.4、B【解题分析】
根据焦点所在坐标轴和渐近线方程设出双曲线的标准方程,结合焦点坐标求解.【题目详解】∵双曲线与的渐近线相同,且焦点在轴上,∴可设双曲线的方程为,一个焦点为,∴,∴,故的标准方程为.故选:B【题目点拨】此题考查根据双曲线的渐近线和焦点求解双曲线的标准方程,易错点在于漏掉考虑焦点所在坐标轴导致方程形式出错.5、D【解题分析】
利用复数代数形式的乘除运算化简,再由复数模的计算公式求解.【题目详解】解:,复数的模为.故选:D.【题目点拨】本题主要考查复数代数形式的乘除运算,考查复数模的求法,属于基础题.6、A【解题分析】
根据向量垂直的坐标表示列方程,解方程求得的值.【题目详解】由于向量,,且,所以解得.故选:A【题目点拨】本小题主要考查向量垂直的坐标表示,属于基础题.7、B【解题分析】
画出可行域和目标函数,根据平移得到最值点,再利用均值不等式得到答案.【题目详解】如图所示,画出可行域和目标函数,根据图像知:当时,有最大值为,即,故..当,即时等号成立.故选:.【题目点拨】本题考查了线性规划中根据最值求参数,均值不等式,意在考查学生的综合应用能力.8、D【解题分析】分析:根据平面向量的数量积可得,再结合图形求出与方向上的投影即可.详解:如图所示:,,,又,,在方向上的投影是:,故选D.点睛:本题考查了平面向量的数量积以及投影的应用问题,也考查了数形结合思想的应用问题.9、D【解题分析】
根据线面垂直的性质,可知;结合即可证明,进而求得.由线段关系及平面向量数量积定义即可求得.【题目详解】长方体中,,点T在棱上,若平面.则,则,所以,则,所以,故选:D.【题目点拨】本题考查了直线与平面垂直的性质应用,平面向量数量积的运算,属于基础题.10、C【解题分析】
先求出复合函数在上是单调函数的充要条件,再看其和的包含关系,利用集合间包含关系与充要条件之间的关系,判断正确答案.【题目详解】,且),由得或,即的定义域为或,(且)令,其在单调递减,单调递增,在上是单调函数,其充要条件为即.故选:C.【题目点拨】本题考查了复合函数的单调性的判断问题,充要条件的判断,属于基础题.11、B【解题分析】
观察已知条件,对进行化简,运用累加法和裂项法求出结果.【题目详解】已知,则,所以有,,,,两边同时相加得,又因为,所以.故选:【题目点拨】本题考查了求数列某一项的值,运用了累加法和裂项法,遇到形如时就可以采用裂项法进行求和,需要掌握数列中的方法,并能熟练运用对应方法求解.12、D【解题分析】由题意得,函数点定义域为且,所以定义域关于原点对称,且,所以函数为奇函数,图象关于原点对称,故选D.二、填空题:本题共4小题,每小题5分,共20分。13、39【解题分析】
设等差数列公差为d,首项为,再利用基本量法列式求解公差与首项,进而求得即可.【题目详解】设等差数列公差为d,首项为,根据题意可得,解得,所以.故答案为:39【题目点拨】本题考查等差数列的基本量计算以及前n项和的公式,属于基础题.14、32π【解题分析】
设ED=a,根据勾股定理的逆定理可以通过计算可以证明出CE⊥ED.AM=x,根据三棱锥的体积公式,运用基本不等式,可以求出AM的长度,最后根据球的表面积公式进行求解即可.【题目详解】设ED=a,则CDa.可得CE2+DE2=CD2,∴CE⊥ED.当平面ABD⊥平面BCD时,当四面体C﹣EMN的体积才有可能取得最大值,设AM=x.则四面体C﹣EMN的体积(a﹣x)a×xax(a﹣x),当且仅当x时取等号.解得a=2.此时三棱锥A﹣BCD的外接球的表面积=4πa2=32π.故答案为:32π【题目点拨】本题考查了基本不等式的应用,考查了球的表面积公式,考查了数学运算能力和空间想象能力.15、【解题分析】
由切线的性质,可知,切由直角三角形PAO,PBO,即可设,进而表示,由图像观察可知进而求出x的范围,再用的式子表示,整理后利用换元法与双勾函数求出最小值.【题目详解】由题可知,,设,由切线的性质可知,则显然,则或(舍去)因为令,则,由双勾函数单调性可知其在区间上单调递增,所以故答案为:【题目点拨】本题考查在以直线与圆的位置关系为背景下求向量数量积的最值问题,应用函数形式表示所求式子,进而利用分析函数单调性或基本不等式求得最值,属于较难题.16、-1【解题分析】作出可行域,如图:由得,由图可知当直线经过A点时目标函数取得最小值,A(1,0)所以-1故答案为-1三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】
(1)根据题意,求得的值,根据切点在切线上以及斜率等于,构造方程组求得的值;(2)函数有两个极值点,等价于方程的两个正根,,不等式恒成立,等价于恒成立,,令,求出导数,判断单调性,即可得到的范围,即的范围.【题目详解】(1)由题可知,,,联立可得.(2)当时,,,有两个极值点,,且,,是方程的两个正根,,,不等式恒成立,即恒成立,,由,,得,,令,,在上是减函数,,故.【题目点拨】该题考查的是有关导数的问题,涉及到的知识点有导数的几何意义,函数的极值点的个数,构造新函数,应用导数研究函数的值域得到参数的取值范围,属于较难题目.18、,;,证明见解析【解题分析】
对函数进行求导,并通过三角恒等变换进行转化求得的表达式,对函数再进行求导并通过三角恒等变换进行转化求得的表达式;根据中,的表达式进行归纳猜想,再利用数学归纳法证明即可.【题目详解】(1),其中,[,其中,(2)猜想,下面用数学归纳法证明:①当时,成立,②假设时,猜想成立即当时,当时,猜想成立由①②对成立【题目点拨】本题考查导数及其应用、三角恒等变换、归纳与猜想和数学归纳法;考查学生的逻辑推理能力和运算求解能力;熟练掌握用数学归纳法进行证明的步骤是求解本题的关键;属于中档题.19、(1);(2).【解题分析】
(1)分类讨论去绝对值号,然后解不等式即可.(2)因为对任意,都存在,使得不等式成立,等价于,根据绝对值不等式易求,根据二次函数易求,然后解不等式即可.【题目详解】解:(1)当时,,则当时,由得,,解得;当时,恒成立;当时,由得,,解得.所以的解集为(2)对任意,都存在,得成立,等价于.因为,所以,且|,①当时,①式等号成立,即.又因为,②当时,②式等号成立,即.所以,即即的取值范围为:.【题目点拨】知识:考查含两个绝对值号的不等式的解法;恒成立问题和存在性问题求参变数的范围问题;能力:分析问题和解决问题的能力以及运算求解能力;中档题.20、(1);(2).【解题分析】
(1)根据,,成等差数列以及为等比数列,通过直接对进行赋值计算出的首项和公比,即可求解出的通项公式;(2)的通项公式符合等差乘以等比的形式,采用错位相减法进行求和.【题目详解】(1)数列为等比数列,且,,成等差数列.设数列的公比为,,,解得(2),,,,.【题目点拨】本题考查等差、等比数列的综合以及错位相减法求和的应用,难度一般.判断是否适合使用错位相减法,可根据数列的通项公式是否符合等差乘以等比的形式来判断.21、(1)整数的最大值为;(2)见解析.【解题分析】
(1)将不等式变形为,构造函数,利用导数研究函数的单调性并确定其最值,从而得到正整数的最大值;(2)根据(1)的结论得到,利用不等式的基本性质可证得结论.【题目详解】(1)由得,令,,令,对恒成立,所以,函数在上单调递增,,,,,故存在使得,即,从而当时,有,,所以,函数在上单调递增;当时,有,,所以,函数在上单调递减.所以,,,因此,整数的最大值为;(2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 描写清明节习俗的作文试题及答案
- 滑坡灾害地质调查与评估方案
- 废弃矿山生态补偿与环境治理方案
- 社区文化融合建设方案
- 磷酸铁锂锂离子储能电池生产线项目建筑工程方案
- 竣工资料员试题及答案
- 城乡供水一体化工程经济效益和社会效益分析报告
- 高效聚光材料研发-第1篇-洞察与解读
- 健康生活方式宣传周活动试题
- 火灾现场灭火考试题及答案
- 聚乙烯(PE)土工膜防渗工程技术规范(SLT231-98 )
- 装修日巡查表范本
- 成都市建设项目报建流程
- GB/T 7324-2010通用锂基润滑脂
- 广东开放大学市场营销实践报告
- 高考物理一轮复习备考及策略课件
- 水利水电工程概论
- 生物学科“双新”实践与探索 -大单元教学设计视域下的课堂教学课件
- DB32-T 4353-2022 房屋建筑和市政基础设施工程档案资料管理规程
- 医院入职登记表
- 中心静脉导管维护流程
评论
0/150
提交评论