




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知集合A={x︱x>-2}且,则集合B可以是()A.{x︱x2>4} B.{x︱}C.{y︱} D.2.设等差数列的前项和为,若,,则的值为()A. B. C. D.3.对于不同的直线l、、及平面,下列命题中错误的是()A.若,,则 B.若,,则C.若,,则 D.若,,则4.已知等差数列:1,a1,a2,9;等比数列:-9,b1,b2,b3,-1.则b2(a2-a1)的值为()A.8 B.-8C.±8 D.85.等差数列的前项和为,若,则()A.27 B.36 C.45 D.546.是空气质量的一个重要指标,我国标准采用世卫组织设定的最宽限值,即日均值在以下空气质量为一级,在之间空气质量为二级,在以上空气质量为超标.如图是某地11月1日到10日日均值(单位:)的统计数据,则下列叙述不正确的是()A.这天中有天空气质量为一级 B.这天中日均值最高的是11月5日C.从日到日,日均值逐渐降低 D.这天的日均值的中位数是7.下列函数中,既是奇函数又是增函数的为()A. B. C. D.8.下列函数中,是偶函数且在区间上是增函数的是()A. B.C. D.9.已知是第二象限角,()A. B. C. D.10.如图是某地某月1日至15日的日平均温度变化的折线图,根据该折线图,下列结论正确的是()A.这15天日平均温度的极差为B.连续三天日平均温度的方差最大的是7日,8日,9日三天C.由折线图能预测16日温度要低于D.由折线图能预测本月温度小于的天数少于温度大于的天数二、填空题:本大题共6小题,每小题5分,共30分。11.已知圆Ω过点A(5,1),B(5,3),C(﹣1,1),则圆Ω的圆心到直线l:x﹣2y+1=0的距离为_____.12.已知角的终边经过点,则的值为__________.13.已知,则___________.14.已知在数列中,且,若,则数列的前项和为__________.15.已知中,的对边分别为,若,则的周长的取值范围是__________.16.已知为数列{an}的前n项和,且,,则{an}的首项的所有可能值为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在以、、、、、为顶点的五面体中,面是等腰梯形,,面是矩形,平面平面,,.(1)求证:平面平面;(2)若三棱锥的体积为,求的值.18.如图,在四棱锥P~ABCD中,底面ABCD为矩形,E,F分别为AD,PB的中点,PE⊥平面ABCD,AP⊥DP,AP=DP.(1)求证:EF∥平面PCD;(2)设G为AB中点,求证:平面EFG⊥平面PCD.19.已知数列的前项和为,,.(1)求数列的通项公式;(2)在数列中,,其前项和为,求的取值范围.20.在中,角的对边分别为.若.(1)求;(2)求的面积的最大值.21.正项数列的前项和满足.(I)求的值;(II)证明:当,且时,;(III)若对于任意的正整数,都有成立,求实数的最大值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
A、B={x|x>2或x<-2},
∵集合A={x|x>-2},
∴A∪B={x|x≠-2}≠A,不合题意;
B、B={x|x≥-2},
∵集合A={x|x>-2},
∴A∪B={x|x≥-2}=B,不合题意;
C、B={y|y≥-2},
∵集合A={x|x>-2},
∴A∪B={x|x≥-2}=B,不合题意;
D、若B={-1,0,1,2,3},
∵集合A={x|x>-2},
∴A∪B={x|x>-2}=A,与题意相符,
故选D.2、D【解析】
利用等差数列的前项和的性质可求的值.【详解】因为,所以,故,故选D.【点睛】一般地,如果为等差数列,为其前项和,则有性质:(1)若,则;(2)且;(3)且为等差数列;(4)为等差数列.3、C【解析】
由平面的基本性质及其推论得:对于选项C,可能l∥n或l与n相交或l与n异面,即选项C错误,得解.【详解】由平行公理4可得选项A正确,由线面垂直的性质可得选项B正确,由异面直线所成角的定义可得选项D正确,对于选项C,若l∥α,n∥α,则l∥n或l与n相交或l与n异面,即选项C错误,故选C.【点睛】本题考查了平面中线线、线面的关系及性质定理与推论的应用,属简单题.4、B【解析】a2-a1=d=9-13又b22=b1b因为b2与-9,-1同号,所以b2=-3.所以b2(a2-a1)=-3×8本题选择B选项.5、B【解析】
利用等差数列的性质进行化简,由此求得的值.【详解】依题意,所以,故选B.【点睛】本小题主要考查等差数列的性质,考查等差数列前项和公式,属于基础题.6、D【解析】
由折线图逐一判断各选项即可.【详解】由图易知:第3,8,9,10天空气质量为一级,故A正确,11月5日日均值为82,显然最大,故B正确,从日到日,日均值分别为:82,73,58,34,30,逐渐降到,故C正确,中位数是,所以D不正确,故选D.【点睛】本题考查了频数折线图,考查读图,识图,用图的能力,考查中位数的概念,属于基础题.7、D【解析】
根据奇函数和增函数的定义逐项判断.【详解】选项A:不是奇函数,不正确;选项B::在是减函数,不正确;选项C:定义域上没有单调性,不正确;选项D:设,是奇函数,,在都是单调递增,且在处是连续的,在上单调递增,所以正确.故选:D.【点睛】本题考查函数的性质,对于常用函数的性质要熟练掌握,属于基础题.8、A【解析】
逐一分析选项,得到答案.【详解】A.是偶函数,并且在区间时增函数,满足条件;B.不是偶函数,并且在上是减函数,不满足条件;C.是奇函数,并且在区间上时减函数,不满足条件;D.是偶函数,在区间上是减函数,不满足条件;故选A.【点睛】本题考查了函数的基本性质,属于基础题型.9、A【解析】cosα=±=±,又∵α是第二象限角,∴cosα=-.10、B【解析】
利用折线图的性质,结合各选项进行判断,即可得解.【详解】由某地某月1日至15日的日平均温度变化的折线图,得:在中,这15天日平均温度的极差为:,故错误;在中,连续三天日平均温度的方差最大的是7日,8日,9日三天,故正确;在中,由折线图无法预测16日温度要是否低于,故错误;在中,由折线图无法预测本月温度小于的天数是否少于温度大于的天数,故错误.故选.【点睛】本题考查命题真假的判断,考查折线图的性质等基础知识,考查运算求解能力、数据处理能力,考查数形结合思想,是基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
求得线段和线段的垂直平分线,求这两条垂直平分线的交点即求得圆的圆心,在求的圆心到直线的距离.【详解】∵A(5,1),B(5,3),C(﹣1,1),∴AB的中点坐标为(5,2),则AB的垂直平分线方程为y=2;BC的中点坐标为(2,2),,则BC的垂直平分线方程为y﹣2=﹣3(x﹣2),即3x+y﹣8=1.联立,得.∴圆Ω的圆心为Ω(2,2),则圆Ω的圆心到直线l:x﹣2y+1=1的距离为d.故答案为:【点睛】本小题主要考查根据圆上点的坐标求圆心坐标,考查点到直线的距离公式,属于基础题.12、【解析】按三角函数的定义,有.13、;【解析】
把已知式平方可求得,从而得,再由平方关系可求得.【详解】∵,∴,即,∴,即,∴.故答案为.【点睛】本题考查同角三角函数关系,考查正弦的二倍角公式,在用平方关系求值时要注意结果可能有正负,因此要判断是否只取一个值.14、【解析】
根据递推关系式可证得数列为等差数列,利用等差数列通项公式求得,得到,进而求得;利用裂项相消法求得结果.【详解】由得:数列是首项为,公差为的等差数列,即:设前项和为本题正确结果:【点睛】本题考查根据递推关系式证明数列为等差数列、等差数列通项的求解、裂项相消法求数列的前项和;关键是能够通过通项公式的形式确定采用的求和方法,属于常考题型.15、【解析】中,由余弦定理可得,∵,∴,化简可得.∵,∴,解得(当且仅当时,取等号).故.再由任意两边之和大于第三边可得,故有,故的周长的取值范围是,故答案为.点睛:由余弦定理求得,代入已知等式可得,利用基本不等式求得,故.再由三角形任意两边之和大于第三边求得,由此求得△ABC的周长的取值范围.16、【解析】
根据题意,化简得,利用式相加,得到,进而得到,即可求解结果.【详解】因为,所以,所以,将以上各式相加,得,又,所以,解得或.【点睛】本题主要考查了数列的递推关系式应用,其中解答中利用数列的递推关系式,得到关于数列首项的方程求解是解答的关键,着重考查了推理与运算能力,属于中档试题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】
(1)由面面垂直的性质定理得出平面,可得出,再推导出,利用线面垂直的判定定理得出平面,然后利用面面垂直的判定定理可得出平面平面;(2)推导出平面,计算出的面积,然后利用锥体体积公式可求得三棱锥的体积,进而得解.【详解】(1)因为四边形是矩形,故,又平面平面,平面平面,平面,所以平面,又面,所以,在等腰梯形中,,,因,故,,即,又,故平面,平面,所以平面平面;(2)的面积为,,平面,所以,平面,,故.【点睛】本题考查面面垂直的证明,同时也考查了利用三棱锥体积求参数,考查推理能力与计算能力,属于中等题.18、(1)证明见解析(2)证明见解析【解析】
(1)取的中点,连接,通过证明四边形为平行四边形,证得,由此证得平面.(2)通过证明,证得平面,由此证得平面,从而证得平面平面.【详解】(1)证明:取PC的中点H,连接FH则FH∥BC,FH,又ED∥BC,ED,∴ED∥FH,ED=FH,∴四边形EFHD为平行四边形,∴EF∥DH,又DH⊂平面PCD,EF⊄平面PCD,∴EF∥平面PCD;(2)证明:∵PE⊥平面ABCD,CD⊥AD,∴CD⊥AP(三垂线定理),又AP⊥PD,∴AP⊥平面PCD,又∵GF∥AP,∴GF⊥平面PCD,∴平面EFG⊥平面PCD.【点睛】本小题主要考查线面平行的证明,考查面面垂直的证明,考查空间想象能力和逻辑推理能力,属于中档题.19、(1).(2)【解析】
(1)根据已知的等式,再写一个关于等式,利用求通项公式;(2)利用裂项相消法求解,再根据单调性以及求解的取值范围.【详解】解:(1)当时,,,两式相减得整理得,即,又,,,则,当时,,所以.(2),则,.又,所以数列单调递增,当时,最小值为,又因为,所以的取值范围为.【点睛】当,且是等差数列且,则的前项和可用裂项相消法求解:.20、(1)(2)【解析】
(1)用正弦定理将式子化为,进行整理化简可得的值,即得角B;(2)由余弦定理可得关于的等式,再利用基本不等式和三角形面积公式可得面积最大值。【详解】(1)由题得,,,,解得,,.(2),由余弦定理得,,整理得,又,即,则的面积的最大值为.【点睛】本题考查用正弦定理求三角形内角,由余弦定理和基本
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年初试笔试题目及答案
- 2025年胃减压术试题及答案
- 2025年淮北社工面试题目及答案
- 2025年平板技能竞赛题库
- 2025年c语言大考试题及答案
- 2025年有关文化建设竞赛题库
- 2024年成人高考《政治(专升本)》考试题库(含答案)
- 2025年处理舆情面试题及答案
- Unit 1 Happy Holiday Section A 知识点精讲精练 人教2024版八年级英语上册
- 2025年反向出游面试题及答案
- 2025年7月27日宁波市直遴选笔试真题及答案解析
- 美妆售后管理办法
- 2025工商银行房贷借款合同
- 高校辅导员考试基础知识试题题库238题(附答案)
- 信息安全测试员(渗透测试员)理论学习手册练习试题及答案
- 2025年吉林省中考语文试题含答案
- 小学五年级数学奥数数的整除(附练习及详解)
- 医院检验科实验室生物安全管理手册
- 特变电工哲学手册课件
- 公司内部资金调配的管理制度
- 人工湿地运行维护手册范本
评论
0/150
提交评论