版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知点,为坐标原点,分别在线段上运动,则的周长的最小值为()A. B. C. D.2.已知l,m是两条不同的直线,m⊥平面α,则“”是“l⊥m”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件3.直线的倾斜角的大小为()A. B. C. D.4.已知网格纸的各个小格均是边长为一个单位的正方形,一个几何体的三视图如图中粗线所示,则该几何体的表面积为()A. B. C. D.5.在各项均为正数的等比数列中,若,则()A.1 B.4C.2 D.6.过两点,的直线的倾斜角为,则实数=()A.-1 B.1C. D.7.过点且与直线平行的直线方程是()A. B.C. D.8.已知的内角的对边分别为,若,则的形状为()A.等腰三角形 B.直角三角形C.等腰直角三角形 D.等腰或直角三角形9.阅读如图的程序框图,运行该程序,则输出的值为()A.3 B.1C.-1 D.010.已知数列1,,,9是等差数列,数列1,,,,9是等比数列,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在各项均为正数的等比数列中,,,则___________.12.直线与间的距离为________.13.已知,则的值为______14.已知向量,,若,则实数___________.15.在△ABC中,a、b、c分别为角A、B、C的对边,若b·cosC=c·cosB,且cosA=,则cosB的值为_____.16.某班委会由4名男生与3名女生组成,现从中选出2人担任正副班长,其中至少有1名女生当选的概率是______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某种笔记本的单价是5元,买个笔记本需要y元,试用函数的三种表示法表示函数.18.设等差数列的公差为d,前项和为,等比数列的公比为.已知,,,.(1)求数列,的通项公式;(2)当时,记,求数列的前项和.19.如图,三棱柱的侧面是边长为2的菱形,,且.(1)求证:;(2)若,当二面角为直二面角时,求三棱锥的体积.20.如图,在直四棱柱中,底面为等腰梯形,,,,,、、分别是、、的中点.(1)证明:直线平面;(2)求直线与面所成角的大小;(3)求二面角的平面角的余弦值.21.已知向量.(1)若,求的值;(2)当时,求与夹角的余弦值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
分别求出设关于直线对称的点,关于对称的点,当共线时,的周长取得最小值,为,利用两点间的距离公式,求出答案.【详解】过两点的直线方程为设关于直线对称的点,则,解得即,同理可求关于对称的点,当共线时的周长取得最小值为.故选C.【点睛】本题主要考查了点关于直线的对称性的简单应用,试题的技巧性较强,属于中档题.2、A【解析】
根据充分条件和必要条件的定义,结合线面垂直的性质进行判断即可.【详解】当m⊥平面α时,若l∥α”则“l⊥m”成立,即充分性成立,若l⊥m,则l∥α或l⊂α,即必要性不成立,则“l∥α”是“l⊥m”充分不必要条件,故选:A.【点睛】本题主要考查充分条件和必要条件的判断,结合线面垂直的性质和定义是解决本题的关键.难度不大,属于基础题3、B【解析】
由直线方程,可知直线的斜率,设直线的倾斜角为,则,又,所以,故选.4、B【解析】
根据三视图还原几何体即可.【详解】由三视图可知,该几何体为一个圆柱内切了一个圆锥,圆锥侧面积为,圆柱上底面积为,圆柱侧面积为,.所以选择B【点睛】本题主要考查了三视图,根据三视图还原几何体常用的方法有:在正方体或者长方体中切割.属于中等题.5、C【解析】试题分析:由题意得,根据等比数列的性质可知,又因为,故选C.考点:等比数列的性质.6、A【解析】
根据两点的斜率公式及倾斜角和斜率关系,即可求得的值.【详解】过两点,的直线斜率为由斜率与倾斜角关系可知即解得故选:A【点睛】本题考查了两点间的斜率公式,直线的斜率与倾斜角关系,属于基础题.7、D【解析】
先由题意设所求直线为:,再由直线过点,即可求出结果.【详解】因为所求直线与直线平行,因此,可设所求直线为:,又所求直线过点,所以,解得,所求直线方程为:.故选:D【点睛】本题主要考查求直线的方程,熟记直线方程的常见形式即可,属于基础题型.8、A【解析】中,,所以.由正弦定理得:.所以.所以,即因为为的内角,所以所以为等腰三角形.故选A.9、D【解析】
从起始条件、开始执行程序框图,直到终止循环.【详解】,,,,,输出.【点睛】本题是直到型循环,只要满足判断框中的条件,就终止循环,考查读懂简单的程序框图.10、B【解析】
根据等差数列和等比数列性质可分别求得,,代入即可得到结果.【详解】由成等差数列得:由成等比数列得:,又与同号本题正确选项:【点睛】本题考查等差数列、等比数列性质的应用,易错点是忽略等比数列奇数项符号相同的特点,从而造成增根.二、填空题:本大题共6小题,每小题5分,共30分。11、8【解析】
根据题中数列,结合等比数列的性质,得到,即可得出结果.【详解】因为数列为各项均为正数的等比数列,,,所以.故答案为【点睛】本题主要考查等比数列的性质的应用,熟记等比数列的性质即可,属于基础题型.12、【解析】
根据两平行线间的距离,,代入相应的数据,整理计算得到答案.【详解】因为直线与互相平行,所以根据平行线间的距离公式,可以得到它们之间的距离,.【点睛】本题考查两平行线间的距离公式,属于简单题.13、【解析】
根据两角差的正弦公式,化简,解出的值,再平方,即可求解.【详解】由题意,可知,,平方可得则故答案为:【点睛】本题考查三角函数常用公式关系转换,属于基础题.14、【解析】
由垂直关系可得数量积等于零,根据数量积坐标运算构造方程求得结果.【详解】,解得:故答案为:【点睛】本题考查根据向量垂直关系求解参数值的问题,关键是明确两向量垂直,则向量数量积为零.15、【解析】
利用余弦定理表示出与,代入已知等式中,整理得到,再利用余弦定理表示出,将及的值代入用表示出,将表示出的与代入中计算,即可求出值.【详解】由题意,由余弦定理得,代入,得,整理得,所以,即,整理得,即,则,故答案为.【点睛】本题考查了解三角形的综合应用,高考中经常将三角变换与解三角形知识综合起来命题,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理实现边角互化;以上特征都不明显时,则要考虑两个定理都有可能用到.16、【解析】试题分析:∵从7人中选2人共有C72=21种选法,从4个男生中选2人共有C42=6种选法∴没有女生的概率是=,∴至少有1名女生当选的概率1-=.考点:本题主要考查古典概型及其概率计算公式.点评:在使用古典概型的概率公式时,应该注意:(1)要判断该概率模型是不是古典概型;(2)要找出随机事件A包含的基本事件的个数和试验中基本事件的总数.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、见解析.【解析】
根据定义域,分别利用解析法,列表法,图像法表示即可.【详解】解:这个函数的定义域是数集.用解析法可将函数表示为,.用列表法可将函数表示为笔记本数12345钱数510152025用图象法可将函数表示为:【点睛】本题考查函数的表示方法,注意函数的定义域,是基础题.18、(1)见解析(2)【解析】
(1)利用前10项和与首项、公差的关系,联立方程组计算即可;(2)当d>1时,由(1)知cn,写出Tn、Tn的表达式,利用错位相减法及等比数列的求和公式,计算即可.【详解】解:(1)设a1=a,由题意可得,解得,或,当时,an=2n﹣1,bn=2n﹣1;当时,an(2n+79),bn=9•;(2)当d>1时,由(1)知an=2n﹣1,bn=2n﹣1,∴cn,∴Tn=1+3•5•7•9•(2n﹣1)•,∴Tn=1•3•5•7•(2n﹣3)•(2n﹣1)•,∴Tn=2(2n﹣1)•3,∴Tn=6.【点睛】本题考查求数列的通项及求和,利用错位相减法是解决本题的关键,注意解题方法的积累,属于中档题.19、(1)见解析(2)【解析】
(1)连结,交于点,连结,推导出,又,从而面,进而,推导出,由此能得到结论;(2)由题意,可证得是二面角的平面角,进而得,进而计算得,进而利用棱锥的体积公式计算即可.【详解】(1)连结,交于点,连结,因为侧面是菱形,所以,又因为,,所以面而平面,所以,因为,所以,而,所以,故.(2)因为,为的中点,则,由(1)可知,因为,所以面,作,连结,由(1)知,所以且所以是二面角的平面角,依题意得,,所以,设,则,,又由,,所以由,解得,所以.【点睛】本题考查两个角相等的证明,考查三棱锥的体积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,属于中档题.20、(1)证明见解析(2)(3)【解析】
(1)取的中点,证明为平行四边形,且,再由三角形中位线证明,最后由线面平行的判定定理证明即可;(2)作交于点,由线面垂直关系得到直线与面所成角为,再根据是正三角形求解即可;(3)由(2)知,平面,再证明和分别垂直于,求出直线与面所成角为,再求出和的长度即可求解.【详解】(1)在直四棱柱中,取的中点,连接,,,因为,,且,所以为平行四边形,所以,又因为、分别是棱、的中点,所以,所以,因为.所以、、、四点共面,所以平面,又因为平面,所以直线平面.(2)因为,,是棱的中点,所以,为正三角形,取的中点,则,又因为直四棱柱中,平面,所以,所以平面,即直线与面所成角为,所以,即,所以直线与面所成角为.(3)过在平面内作,垂足为,连接.因为面,即,且与相交于点,故且,则为二面角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医疗数据安全共享技术研究展望
- 胆囊结石课件
- 胃酸的分泌教学课件
- 2026届定西市重点中学数学高二上期末监测试题含解析
- 胃癌课件插图
- 2026届山东省邹平双语学校二区高一数学第一学期期末质量跟踪监视试题含解析
- 2026届江西省宜春市靖安中学数学高三上期末学业质量监测试题含解析
- 阿里市重点中学2026届高二上生物期末检测模拟试题含解析
- 医疗数据共享的激励机制创新:从单一到多元激励
- 医疗数据共享的区块链激励与价值医疗
- 一级建造师考试机电工程管理与实务试卷及答案(2025年)
- 2025年天津市直机关遴选公务员面试真题及解析
- 2026年潍坊护理职业学院单招职业倾向性考试必刷测试卷及答案1套
- 医保政策学习课件
- 2025浙江省自由贸易发展中心招聘工作人员5人(第二批)参考笔试试题及答案解析
- 老公情人签约协议书
- 4、蓝恒达QC小组活动基础知识与实务培训课件
- 小学六年级科学上册2025年期末检测卷(含答案)
- 现场清洁度培训课件
- 豪华转马应急预案
- 2025年信用报告征信报告详版个人版模板样板(可编辑)
评论
0/150
提交评论