江苏省泰州市兴化市第一中学2022-2023学年高一数学第二学期期末考试模拟试题含解析_第1页
江苏省泰州市兴化市第一中学2022-2023学年高一数学第二学期期末考试模拟试题含解析_第2页
江苏省泰州市兴化市第一中学2022-2023学年高一数学第二学期期末考试模拟试题含解析_第3页
江苏省泰州市兴化市第一中学2022-2023学年高一数学第二学期期末考试模拟试题含解析_第4页
江苏省泰州市兴化市第一中学2022-2023学年高一数学第二学期期末考试模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知等比数列中,各项都是正数,且成等差数列,则等于()A. B. C. D.2.为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,,第五组,如图是根据试验数据制成的频率分布直方图,已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为()A.6 B.8 C.12 D.183.某单位共有老年人180人,中年人540人,青年人a人,为调查身体健康状况,需要从中抽取一个容量为m的样本,用分层抽样方法抽取进行调查,样本中的中年人为6人,则a和m的值不可以是下列四个选项中的哪组()A.a=810,m=17 B.a=450,m=14C.a=720,m=16 D.a=360,m=124.已知向量,,且与的夹角为,则()A. B.2 C. D.145.宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.如图是源于其思想的一个程序框图,若输入的a,b分别为5,2,则输出的()A.5 B.4 C.3 D.96.如图,在坡度一定的山坡处测得山顶上一建筑物的顶端对于山坡的斜度为,向山顶前进100米到达后,又测得对于山坡的斜度为,若米,山坡对于地平面的坡角为,则()A. B. C. D.7.计算的值为().A. B. C. D.8.若直线与圆有公共点,则实数的取值范围是()A. B. C. D.9.设集合,,若存在实数t,使得,则实数的取值范围是()A. B. C. D.10.数列,通项公式为,若此数列为递增数列,则的取值范围是A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.数列满足,,则___________.12.在数列中,,是其前项和,当时,恒有、、成等比数列,则________.13.5人排成一行合影,甲和乙不相邻的排法有______种.(用数字回答)14.已知直线:与圆交于,两点,过,分别作的垂线与轴交于,两点,若,则__________.15.已知实数满足,则的最大值为_______.16.在三棱锥中,已知,,则三棱锥内切球的表面积为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设正项等比数列且的等差中项为.(1)求数列的通项公式;(2)若,数列的前n项为,数列满足,为数列的前项和,求.18.某书店刚刚上市了《中国古代数学史》,销售前该书店拟定了5种单价进行试销,每种单价(元)试销l天,得到如表单价(元)与销量(册)数据:单价(元)1819202122销量(册)6156504845(l)根据表中数据,请建立关于的回归直线方程:(2)预计今后的销售中,销量(册)与单价(元)服从(l)中的回归方程,已知每册书的成本是12元,书店为了获得最大利润,该册书的单价应定为多少元?附:,,,.19.已知集合,其中,由中的元素构成两个相应的集合:,.其中是有序数对,集合和中的元素个数分别为和.若对于任意的,总有,则称集合具有性质.(Ⅰ)检验集合与是否具有性质并对其中具有性质的集合,写出相应的集合和.(Ⅱ)对任何具有性质的集合,证明.(Ⅲ)判断和的大小关系,并证明你的结论.20.已知三棱柱中,三个侧面均为矩形,底面为等腰直角三角形,,点为棱的中点,点在棱上运动.(1)求证;(2)当点运动到某一位置时,恰好使二面角的平面角的余弦值为,求点到平面的距离;(3)在(2)的条件下,试确定线段上是否存在一点,使得平面?若存在,确定其位置;若不存在,说明理由.21.已知公差不为的等差数列满足.若,,成等比数列.(1)求的通项公式;(2)设,求数列的前项和.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

由条件可得a3=a1+2a2,即a1q2=a1+2a1q,解得q=1.代入所求运算求得结果.【详解】∵等比数列{an}中,各项都是正数,且a1,a3,2a2成等差数列,故公比q不等于1.∴a3=a1+2a2,即a1q2=a1+2a1q,解得q=1.∴3+2,故选:C.【点睛】本题主要考查等差中项的性质,等比数列的通项公式,考查了整体化的运算技巧,属于基础题.2、C【解析】试题分析:由直方图可得分布在区间第一组与第二组共有21人,分布在区间第一组与第二组的频率分别为1.24,1.16,所以第一组有12人,第二组8人,第三组的频率为1.36,所以第三组的人数:18人,第三组中没有疗效的有6人,第三组中有疗效的有12人.考点:频率分布直方图3、B【解析】

根据分层抽样的规律,计算a和m的关系为:8+a【详解】某单位共有老年人180人,中年人540人,青年人a人,样本中的中年人为6人,则老年人为:180×6540=22+6+代入选项计算,B不符合故答案为B【点睛】本题考查了分层抽样,意在考查学生的计算能力.4、A【解析】

首先求出、,再根据计算可得;【详解】解:,,又,且与的夹角为,所以.故选:A【点睛】本题考查平面向量的数量积以及运算律,属于基础题.5、B【解析】

由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出,分析循环中各变量的变化情况,可得答案.【详解】当时,,,满足进行循环的条件;当时,,,满足进行循环的条件;当时,,,满足进行循环的条件;当时,,,不满足进行循环的条件;故选:B【点睛】本题主要考查程序框图,解题的关键是读懂流程图各个变量的变化情况,属于基础题.6、C【解析】

先在中利用正弦定理求出BC的值,再在中由正弦定理解出,再计算.【详解】在中,,在中,,又∵,∴.故选C.【点睛】本题考查解三角形在实际中的应用,属于基础题.7、D【解析】

利用诱导公式以及特殊角的三角函数值可求出结果.【详解】由诱导公式可得,故选D.【点睛】本题考查诱导公式求值,解题时要熟练利用“奇变偶不变,符号看象限”基本原则加以理解,考查计算能力,属于基础题.8、C【解析】由题意得圆心为,半径为.圆心到直线的距离为,由直线与圆有公共点可得,即,解得.∴实数a取值范围是.选C.9、C【解析】

得到圆心距与半径和差关系得到答案.【详解】圆心距存在实数t,使得故答案选C【点睛】本题考查了两圆的位置关系,意在考查学生的计算能力.10、B【解析】因为的对称轴为,因为此数列为递增数列,所以.二、填空题:本大题共6小题,每小题5分,共30分。11、2【解析】

利用递推公式求解即可.【详解】由题得.故答案为2【点睛】本题主要考查利用递推公式求数列中的项,意在考查学生对这些知识的理解掌握水平,属于基础题.12、.【解析】

由题意得出,当时,由,代入,化简得出,利用倒数法求出的通项公式,从而得出的表达式,于是可求出的值.【详解】当时,由题意可得,即,化简得,得,两边取倒数得,,所以,数列是以为首项,以为公差的等差数列,,,则,因此,,故答案为:.【点睛】本题考查数列极限的计算,同时也考查了数列通项的求解,在含的数列递推式中,若作差法不能求通项时,可利用转化为的递推公式求通项,考查分析问题和解决问题的能力,综合性较强,属于中等题.13、72【解析】

先对其中3个人进行全排列有种,再对甲和乙进行插空有种,利用乘法原理得到排法总数为.【详解】先对其中3个人进行全排列有种,再对甲和乙进行插空有种,利用乘法原理得到排法总数为种,故答案为72【点睛】本题考查排列、组合计数原理的应用,考查基本运算能力.14、4【解析】

由题,根据垂径定理求得圆心到直线的距离,可得m的值,既而求得CD的长可得答案.【详解】因为,且圆的半径为,所以圆心到直线的距离为,则由,解得,代入直线的方程,得,所以直线的倾斜角为,由平面几何知识知在梯形中,.故答案为4【点睛】解决直线与圆的综合问题时,一方面,要注意运用解析几何的基本思想方法(即几何问题代数化),把它转化为代数问题;另一方面,由于直线与圆和平面几何联系得非常紧密,因此,准确地作出图形,并充分挖掘几何图形中所隐含的条件,利用几何知识使问题较为简捷地得到解决.15、【解析】

根据约束条件,画出可行域,目标函数可以看成是可行域内的点和的连线的斜率,从而找到最大值时的最优解,得到最大值.【详解】根据约束条件可以画出可行域,如下图阴影部分所示,目标函数可以看成是可行域内的点和的连线的斜率,因此可得,当在点时,斜率最大联立,得即所以此时斜率为,故答案为.【点睛】本题考查简单线性规划问题,求目标函数为分式的形式,关键是要对分式形式的转化,属于中档题.16、【解析】

先计算出三棱锥的体积,利用等体积法求出三棱锥的内切球的半径,再求出内切球的表面积。【详解】取CD中点为E,并连接AE、BE在中,由等腰三角形的性质可得,同理则在中点A到边BE的距离即为点A到平面BCD的距离h,在中,【点睛】本题综合考查了三棱锥的体积、三棱锥内切圆的求法、球的表面积,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】

(1)利用已知条件列出方程,求出首项与公比,然后求解通项公式.(2)化简数列的通项公式,利用裂项相消法求解数列的和即可.【详解】(1)设等比数列的公比为,由题意,得,解得,所以.(2)由(1)得,∴,∴,∴.【点睛】本题考查数列的递推关系式以及数列求和,考查转化思想以及计算能力.18、(1)(2)当单价应定为22.5元时,可获得最大利润【解析】

(l)先计算的平均值,再代入公式计算得到(2)计算利润为:计算最大值.【详解】解:(1),,,所以对的回归直线方程为:.(2)设获得的利润为,,因为二次函数的开口向下,所以当时,取最大值,所以当单价应定为22.5元时,可获得最大利润.【点睛】本题考查了回归方程,函数的最值,意在考查学生的计算能力.19、(Ⅰ)集合不具有性质,集合具有性质,相应集合,,集合,(Ⅱ)见解析(Ⅲ)【解析】解:集合不具有性质.集合具有性质,其相应的集合和是,.(II)证明:首先,由中元素构成的有序数对共有个.因为,所以;又因为当时,时,,所以当时,.从而,集合中元素的个数最多为,即.(III)解:,证明如下:(1)对于,根据定义,,,且,从而.如果与是的不同元素,那么与中至少有一个不成立,从而与中也至少有一个不成立.故与也是的不同元素.可见,中元素的个数不多于中元素的个数,即,(2)对于,根据定义,,,且,从而.如果与是的不同元素,那么与中至少有一个不成立,从而与中也不至少有一个不成立,故与也是的不同元素.可见,中元素的个数不多于中元素的个数,即,由(1)(2)可知,.20、(1)见解析;(2);(3)存在,为中点.【解析】

(1)以CB为x轴,CA为y轴,CC1为z轴,C为原点建立坐标系,设E(m,0,2),要证A1C⊥AE,可证,只需证明,利用向量的数量积运算即可证明;(2)分别求出平面EA1D、平面A1DB的一个法向量,由两法向量夹角余弦值的绝对值等于,解得m值,由此可得答案;(3)在(2)的条件下,设F(x,y,0),可知与平面A1DB的一个法向量平行,由此可求出点F坐标,进而求出||,即得答案.【详解】(1)以CB为x轴,CA为y轴,CC1为z轴,C为原点建立坐标系,设E(m,0,2),C(0,0,0),A(0,2,0),A1(0,2,2),D(0,0,1),B(2,0,0),=(0,﹣2,﹣2),=(m,﹣2,2),因为=0+(﹣2)×(﹣2)﹣2×2=0,所以⊥,即A1C⊥AE;(2)=(m,0,1),=(0,2,1),设=(x,y,z)为平面EA1D的一个法向量,则即,取=(2,m,﹣2m),=(2,0,﹣1),设=(x,y,z)为平面A1DB的一个法向量,则,即,取=(1,﹣1,2),由二面角E﹣A1D﹣B的平面角的余弦值为,得||=,解得m=1,平面A1DB的一个法向量=(1,﹣1,2),根据点E到面的距离为:.(3)由(2)知E(1,0,2),且=(1,﹣1,2)为平面A1DB的一个法向量,设F(x,y,0),则=(x﹣1,y,﹣2),且,所以x﹣1=﹣1,y=1,解得x=0,y=1,所以=(﹣1,1,﹣2),=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论