2023年北京市第四中学数学高一第二学期期末综合测试试题含解析_第1页
2023年北京市第四中学数学高一第二学期期末综合测试试题含解析_第2页
2023年北京市第四中学数学高一第二学期期末综合测试试题含解析_第3页
2023年北京市第四中学数学高一第二学期期末综合测试试题含解析_第4页
2023年北京市第四中学数学高一第二学期期末综合测试试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设长方体的长、宽、高分别为2,1,1,其顶点都在同一个球面上,则该球的表面积为()A. B. C. D.2.取一根长度为的绳子,拉直后在任意位置剪断,则剪得两段绳有一段长度不小于的概率是()A. B. C. D.3.在平面直角坐标系中,已知点,点,直线:.如果对任意的点到直线的距离均为定值,则点关于直线的对称点的坐标为()A. B. C. D.4.在1和19之间插入个数,使这个数成等差数列,若这个数中第一个为,第个为,当取最小值时,的值是()A.4 B.5 C.6 D.75.如图所示,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设,若在大等边三角形中随机取一点,则此点取自小等边三角形的概率是()A. B. C. D.6.要得到函数y=cos的图象,只需将函数y=cos2的图象()A.向左平移个单位长度 B.向左平移个单位长度C.向右平移个单位长度 D.向右平移个单位长度7.已知数列an满足a1=1,aA.32021-18 B.320208.在四边形ABCD中,=a+2b,=-4a-b,=-5a-3b,其中a,b不共线,则四边形ABCD为()A.平行四边形 B.矩形 C.梯形 D.菱形9.若角的终边与单位圆交于点,则()A. B. C. D.不存在10.如图,网格纸上小正方形的边长为,粗线画出的是某几何体的三视图,则此几何体的体积为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.如图,在中,,,,则________.12.若是等比数列,,,且公比为整数,则______.13.已知正三棱柱木块,其中,,一只蚂蚁自点出发经过线段上的一点到达点,当沿蚂蚁走过的最短路径,截开木块时,两部分几何体的体积比为______.14.某班级有50名学生,现用系统抽样的方法从这50名学生中抽出10名学生,将这50名学生随机编号为1~5号,并按编号顺序平均分成10组(1~5号,15.无穷等比数列的首项是某个正整数,公比为单位分数(即形如:的分数,为正整数),若该数列的各项和为3,则________.16.函数的定义域为________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.年月日是第二十七届“世界水日”,月日是第三十二届“中国水周”.我国纪念年“世界水日”和“中国水周”活动的宣传主题为“坚持节水优先,强化水资源管理”.某中学课题小组抽取、两个小区各户家庭,记录他们月份的用水量(单位:)如下表:小区家庭月用水量小区家庭月用水量(1)根据两组数据完成下面的茎叶图,从茎叶图看,哪个小区居民节水意识更好?(2)从用水量不少于的家庭中,、两个小区各随机抽取一户,求小区家庭的用水量低于小区的概率.18.已知数列的前项和.(1)求数列通项公式;(2)令,求数列的前n项和.19.已知为等差数列,且,.(1)求的通项公式;(2)若等比数列满足,,求数列的前项和公式.20.在中,分别为内角的对边,且(1)求的大小:(2)若,求的面积.21.如图,平行四边形中,是的中点,交于点.设,.(1)分别用,表示向量,;(2)若,,求.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

先求出长方体的对角线的长度,即得外接球的直径,再求球的表面积得解.【详解】由题得长方体外接球的直径.故选:B【点睛】本题主要考查长方体的外接球的表面积的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.2、A【解析】

设其中一段的长度为,可得出另一段长度为,根据题意得出的取值范围,再利用几何概型的概率公式可得出所求事件的概率.【详解】设其中一段的长度为,可得出另一段长度为,由于剪得两段绳有一段长度不小于,则或,可得或.由于,所以,或.由几何概型的概率公式可知,事件“剪得两段绳有一段长度不小于”的概率为,故选:A.【点睛】本题考查长度型几何概型概率公式的应用,解题时要将问题转化为区间型的几何概型来计算概率,考查分析问题以及运算求解能力,属于中等题.3、B【解析】

利用点到直线的距离公式表示出,由对任意的点到直线的距离均为定值,从而可得,求得直线的方程,再利用点关于直线对称的性质即可得到对称点的坐标。【详解】由点到直线的距离公式可得:点到直线的距离由于对任意的点到直线的距离均为定值,所以,即,所以直线的方程为:设点关于直线的对称点的坐标为故,解得:,所以设点关于直线的对称点的坐标为故答案选B【点睛】本题主要考查点关于直线对称的对称点的求法,涉及点到直线的距离,两直线垂直斜率的关系,中点公式等知识点,考查学生基本的计算能力,属于中档题。4、B【解析】

设等差数列公差为,可得,再利用基本不等式求最值,从而求出答案.【详解】设等差数列公差为,则,从而,此时,故,所以,即,当且仅当,即时取“=”,又,解得,所以,所以,故选:B.【点睛】本题主要考查数列和不等式的综合运用,需要学生对所学知识融会贯通,灵活运用.5、A【解析】

根据题意,分析可得,由三角形面积公式计算可得△DEF和△ACF的面积,进而可得△ABC的面积,由几何概型公式计算可得答案.【详解】根据题意,为等边三角形,则,则,中,,其面积,中,,,其面积,则的面积,故在大等边三角形中随机取一点,则此点取自小等边三角形的概率,故选:A.【点睛】本题主要考查几何概型中的面积类型,基本方法是:分别求得构成事件A的区域面积和试验的全部结果所构成的区域面积,两者求比值,即为概率.6、B【解析】∵,∴要得到函数的图像,只需将函数的图像向左平移个单位.选B.7、B【解析】

由题意得出3n+1-12<an+2【详解】∵an+1-又∵an+2-∵an∈Z,∴于是得到a3上述所有等式全部相加得a2019因此,a2019【点睛】本题考查数列项的计算,考查累加法的应用,解题的关键就是根据题中条件构造出等式an+28、C【解析】∵=++=-8a-2b=2,与不平行,∴四边形ABCD为梯形.9、B【解析】

由三角函数的定义可得:,得解.【详解】解:在单位圆中,,故选B.【点睛】本题考查了三角函数的定义,属基础题.10、B【解析】,,.选B.点睛:空间几何体体积问题的常见类型及解题策略(1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解.(2)若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解.(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

先将转化为和为基底的两组向量,然后通过数量积即可得到答案.【详解】,.【点睛】本题主要考查向量的基本运算,数量积运算,意在考查学生的分析能力和计算能力.12、512【解析】

由题设条件知和是方程的两个实数根,解方程并由公比q为整数,知,,由此能够求出公比,从而得到.【详解】是等比数列,

,,

,,

和是方程的两个实数根,

解方程,

得,,

公比q为整数,

,,

,解得,

.故答案为:512【点睛】本题考查等比数列的通项公式的求法,利用了等比数列下标和的性质,是基础题.解题时要认真审题,仔细解答,注意合理地进行等价转化.13、【解析】

将正三棱柱的侧面沿棱展开成平面,连接与的交点即为满足最小时的点,可知点为棱的中点,即可计算出沿着蚂蚁走过的路径截开木块时两几何体的体积之比.【详解】将正三棱柱沿棱展开成平面,连接与的交点即为满足最小时的点.由于,,再结合棱柱的性质,可得,一只蚂蚁自点出发经过线段上的一点到达点,当沿蚂蚁走过的最短路径,为的中点,因为三棱柱是正三棱柱,所以当沿蚂蚁走过的最短路径,截开木块时,两部分几何体的体积比为:.故答案为:.【点睛】本题考查棱柱侧面最短路径问题,涉及棱柱侧面展开图的应用以及几何体体积的计算,考查分析问题解决问题能力,是中档题.14、33【解析】试题分析:因为是从50名学生中抽出10名学生,组距是5,∵第三组抽取的是13号,∴第七组抽取的为13+4×5=33.考点:系统抽样15、【解析】

利用无穷等比数列的各项和,可求得,从而,利用首项是某个自然数,可求,进而可求出.【详解】无穷等比数列各项和为3,,是个自然数,则,.故答案为:【点睛】本题主要考查了等比数列的前项和公式,需熟记公式,属于基础题.16、【解析】

根据反余弦函数的定义,可得函数满足,即可求解.【详解】由题意,根据反余弦函数的定义,可得函数满足,解得,即函数的定义域为.故答案为:【点睛】本题主要考查了反余弦函数的定义的应用,其中解答中熟记反余弦函数的定义,列出不等式求解是解答的关键,着重考查了推理与运算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)【解析】

(1)根据表格中的数据绘制出茎叶图,并结合茎叶图中数据的分布可比较出两个小区居民节水意识;(2)列举出所有的基本事件,确定所有的基本事件数,然后确定事件“小区家庭的用水量低于小区”所包含的基本事件数,利用古典概型的概率公式可计算出事件“小区家庭的用水量低于小区”的概率.【详解】(1)绘制如下茎叶图:由以上茎叶图可以看出,小区月用水量有的叶集中在茎、上,而小区月用水量有的叶集中在茎、上,由此可看出小区居民节水意识更好;(2)从用水量不少于的家庭中,、两个小区各随机抽取一户的结果:、、、、、、、,共个基本事件,小区家庭的用水量低于小区的的结果:、、,共个基本事件.所以,小区家庭的用水量低于小区的概率是.【点睛】本题考查茎叶图的绘制与应用,以及利用古典概型计算事件的概率,考查收集数据与处理数据的能力,考查计算能力,属于中等题.18、(1);(2).【解析】

(1)根据和关系得到答案.(2)首先计算数列通项,再根据裂项求和得到答案.【详解】解:(1)当时,当时,(2)【点睛】本题考查了和关系,裂项求和,是数列的常考题型.19、(1);(2).【解析】

本试题主要是考查了等差数列的通项公式的求解和数列的前n项和的综合运用.、(1)设公差为,由已知得解得,(2),等比数列的公比利用公式得到和.20、(1)(2)【解析】

(1)根据正弦定理将,角化为边得,即,再由余弦定理求解(2)根据,由正弦定理,求边

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论