完全平方公式数学教案_第1页
完全平方公式数学教案_第2页
完全平方公式数学教案_第3页
完全平方公式数学教案_第4页
完全平方公式数学教案_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第页共页完全平方公式数学教案完全平方公式数学教案完全平方公式数学教案11.能根据多项式的乘法推导出完全平方公式;(重点)2.理解并掌握完全平方公式,并能进展计算.(重点、难点)一、情境导入计算:(1)(x+1)2;(2)(x-1)2;(3)(a+b)2;(4)(a-b)2.由上述计算,你发现了什么结论?二、合作探究探究点:完全平方公式【类型一】直接运用完全平方公式进展计算利用完全平方公式计算:(1)(5-a)2;(2)(-3-4n)2;(3)(-3a+b)2.解析:直接运用完全平方公式进展计算即可.解:(1)(5-a)2=25-10a+a2;(2)(-3-4n)2=92+24n+16n2;(3)(-3a+b)2=9a2-6ab+b2.方法总结:完全平方公式:(a±b)2=a2±2ab+b2.可巧记为“首平方,末平方,首末两倍中间放”.变式训练:见《学练优》本课时练习“课堂达标训练”第12题【类型二】构造完全平方式假如36x2+(+1)x+252是一个完全平方式,求的值.解析:先根据两平方项确定出这两个数,再根据完全平方公式确定的值.解:∵36x2+(+1)x+252=(6x)2+(+1)x+(5)2,∴(+1)x=±26x5,∴+1=±60,∴=59或-61.方法总结:两数的平方和加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,防止漏解.变式训练:见《学练优》本课时练习“课堂达标训练”第4题【类型三】运用完全平方公式进展简便计算利用完全平方公式计算:(1)992;(2)1022.解析:(1)把99写成(100-1)的形式,然后利用完全平方公式展开计算.(2)可把102分成100+2,然后根据完全平方公式计算.解:(1)992=(100-1)2=1002-2×100+12=10000-200+1=9801;(2)1022=(100+2)2=1002+2×100×2+4=10404.方法总结:利用完全平方公式计算一个数的平方时,先把这个数写成整十或整百的数与另一个数的和或差,然后根据完全平方公式展开计算.变式训练:见《学练优》本课时练习“课堂达标训练”第13题【类型四】灵敏运用完全平方公式求代数式的值假设(x+)2=9,且(x-)2=1.(1)求1x2+12的值;(2)求(x2+1)(2+1)的值.解析:(1)先去括号,再整体代入即可求出答案;(2)先变形,再整体代入,即可求出答案.解:(1)∵(x+)2=9,(x-)2=1,∴x2+2x+2=9,x2-2x+2=1,4x=9-1=8,∴x=2,∴1x2+12=x2+2x22=〔x+〕2-2xx22=9-2×222=54;(2)∵(x+)2=9,x=2,∴(x2+1)(2+1)=x22+2+x2+1=x22+(x+)2-2x+1=22+9-2×2+1=10.方法总结:所求的展开式中都含有x或x+时,我们可以把它们看作一个整体代入到需要求值的代数式中,整体求解.变式训练:见《学练优》本课时练习“课后稳固提升”第9题【类型五】完全平方公式的几何背景我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.例如图甲可以用来解释(a+b)2-(a-b)2=4ab.那么通过图乙面积的计算,验证了一个恒等式,此等式是()A.a2-b2=(a+b)(a-b)B.(a-b)(a+2b)=a2+ab-2b2C.(a-b)2=a2-2ab+b2D.(a+b)2=a2+2ab+b2解析:空白局部的面积为(a-b)2,还可以表示为a2-2ab+b2,所以,此等式是(a-b)2=a2-2ab+b2.应选C.方法总结:通过几何图形面积之间的数量关系对完全平方公式做出几何解释.变式训练:见《学练优》本课时练习“课堂达标训练”第7题【类型六】与完全平方公式有关的探究问题下表为杨辉三角系数表,它的作用是指导读者按规律写出形如(a+b)n(n为正整数)展开式的系数,请你仔细观察下表中的规律,填出(a+b)6展开式中所缺的系数.(a+b)1=a+b,(a+b)2=a2+2ab+b2,(a+b)3=a3+3a2b+3ab2+b3,那么(a+b)6=a6+6a5b+15a4b2+________a____3+15a2b4+6ab5+b6.解析:由(a+b)1=a+b,(a+b)2=a2+2ab+b2,(a+b)3=a3+3a2b+3ab2+b3可得(a+b)n的各项展开式的系数除首尾两项都是1外,其余各项系数都等于(a+b)n-1的相邻两个系数的和,由此可得(a+b)4的各项系数依次为1、4、6、4、1;(a+b)5的各项系数依次为1、5、10、10、5、1;因此(a+b)6的系数分别为1、6、15、20、15、6、1,故填20.方法总结:对于规律探究题,读懂题意并根据所给的'式子寻找规律,是快速解题的关键.变式训练:见《学练优》本课时练习“课后稳固提升”第10题三、板书设计1.完全平方公式两个数的和(或差)的平方,等于这两个数的平方和加(或减)这两个数乘积的2倍.(a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2.2.完全平方公式的运用本节课通过多项式乘法推导出完全平方公式,让学生自己总结出完全平方公式的特征,注意不要出现如下错误:(a+b)2=a2+b2,(a-b)2=a2-b2.为帮助学生记忆完全平方公式,可采用如下口诀:首平方,尾平方,乘积两倍在中央.教学中,老师可通过判断正误等习题强化学生对完全平方公式的理解记忆。完全平方公式数学教案2一、内容简介本节课的主题:通过一系列的探究活动,引导学生从计算结果中总结出完全平方公式的两种形式。关键信息:1、以教材作为出发点,根据《数学课程标准》,引导学生体会、参与科学探究过程。首先提出等号左边的两个相乘的多项式和等号右边得出的三项有什么关系。通过学生自主、独立的发现问题,对可能的答案做出假设与猜测,并通过屡次的检验,得出正确的结论。学生通过搜集和处理信息、表达与交流等活动,获得知识、技能、方法、态度特别是创新精神和理论才能等方面的开展。2、用标准的数学语言得出结论,使学生感受科学的严谨,启迪学习态度和方法。二、学习者分析^p:1、在学习本课之前应具备的根本知识和技能:①同类项的定义。②合并同类项法那么③多项式乘以多项式法那么。2、学习者对即将学习的内容已经具备的程度:在学习完全平方公式之前,学生已经可以整理出公式的右边形式。这节课的目的就是让学生从等号的左边形式和右边形式之间的关系,总结出公式的应用方法。三、教学/学习目的及其对应的课程标准:(一)教学目的:1、经历探究完全平方公式的过程,进一步开展符号感和推力才能。2、会推导完全平方公式,并能运用公式进展简单的计算。(二)知识与技能:经历从详细情境中抽象出符号的过程,认识有理数、实数、代数式、防城、不等式、函数;掌握必要的运算,(包括估算)技能;探究详细问题中的数量关系和变化规律,并能运用代数式、防城、不等式、函数等进展描绘。(四)解决问题:能结合详细情景发现并提出数学问题;尝试从不同角度寻求解决问题的方法,并能有效地解决问题,尝试评价不同方法之间的差异;通过对解决问题过程的反思,获得解决问题的经历。(五)情感与态度:敢于面对数学活动中的困难,并有独立克制困难和运用知识解决问题的成功体验,有学好数学的自信心;并尊重与理解别人的见解;能从交流中获益。四、教育理念和教学方式:1、老师是学生学习的组织者、促进者、合学生是学习的主人,在老师指导下主动的、富有个性的学习,用自己的身体去亲自经历,用自己的心灵去亲自感悟。教学是师生交往、积极互动、共同开展的过程。当学生迷路的时候,老师不轻易告诉方向,而是引导他怎样去辨明方向;当学生登山畏惧了的时候,老师不是拖着他走,而是唤起他内在的精神动力,鼓励他不断向上攀登。2、采用“问题情景—探究交流—得出结论—强化训练”的形式展开教学。3、教学评价方式:(1)通过课堂观察,关注学生在观察、总结、训练等活动中的主动参与程度与合作交流意识,及时给与鼓励、强化、指导和矫正。(2)通过判断和举例,给学生更多时机,在自然放松的状态下,提醒思维过程和反应知识与技能的掌握情况,使老师可以及时诊断学情,调查教学。(3)通过课后访谈和作业分析^p,及时查漏补缺,确保到达预期的教学效果。五、教学媒体:多媒体六、教学和活动过程:教学过程设计如下:〈一〉、提出问题[引入]同学们,前面我们学习了多项式乘多项式法那么和合并同类项法那么,通过运算以下四个小题,你能总结出结果与多项式中两个单项式的关系吗?(2m+3n)2=_______________,(-2m-3n)2=______________,(2m-3n)2=_______________,(-2m+3n)2=_______________。〈二〉、分析^p问题1、[学生答复]分组交流、讨论(2m+3n)2=4m2+12mn+9n2,(-2m-3n)2=4m2+12mn+9n2,(2m-3n)2=4m2-12mn+9n2,(-2m+3n)2=4m2-12mn+9n2。(1)原式的特点。(2)结果的项数特点。(3)三项系数的特点(特别是符号的特点)。(4)三项与原多项式中两个单项式的关系。2、[学生答复]总结完全平方公式的语言描绘:两数和的平方,等于它们平方的和,加上它们乘积的两倍;两数差的平方,等于它们平方的和,减去它们乘积的两倍。3、[学生答复]完全平方公式的数学表达式:(a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2.〈三〉、运用公式,解决问题1、口答:(抢答形式,活泼课堂气氛,激发学生的学习积极性)(m+n)2=____________,(m-n)2=_______________,(-m+n)2=____________,(-m-n)2=______________,(a+3)2=______________,(-c+5)2=______________,(-7-a)2=______________,(0.5-a)2=______________.2、判断:()①(a-2b)2=a2-2ab+b2()②(2m+n)2=2m2+4mn+n2()③(-n-3m)2=n2-6mn+9m2()④(5a+0.2b)2=25a2+5ab+0.4b2()⑤(5a-0.2b)2=5a2-5ab+0.04b2()⑥(-a-2b)2=(a+2b)2()⑦(2a-4b)2=(4a-2b)2()⑧(-5m+n)2=(-n+5m)23、小试牛刀①(x+y)2=______________;②(-y-x)2=_______________;③(2x+3)2=_____________;④(3a-2)2=_______________;⑤(2x+3y)2=____________;⑥(4x-5y)2=______________;⑦(0.5m+n)2=___________;⑧(a-0.6b)2=_____________.〈四〉、[学生小结]你认为完全平方公式在应用过程中,需要注意那些问题?(1)公式右边共有3项。(2)两个平方项符号永远为正。(3)中间项的符号由等号左边的两项符号是否一样决定。(4)中间项是等号左边两项乘积的2倍。〈五〉、冒险岛:(1)(-3a+2b)2=________________________________(2)(-7-2m)2=__________________________________(3)(-0.5m+2n)2=_______________________________(4)(3/5a-1/2b)2=________________________________(5)(mn+3)2=__________________________________(6)(a2b-0.2)2=_________________________________(7)(2xy2-3x2y)2=_______________________________(8)(2n3-3m3)2=________________________________〈六〉、学生自我评价[小结]通过本节课的学习,你有什么收获和感悟?本节课,我们自己通过计算、分析^p结果,总结出了完全平方公式。在知识探究的过程中,同学们积极考虑,大胆探究,团结协作共同获得了进步。〈七〉[作业]P34随堂练习P36习题完全平方公式数学教案3教学目的1。使学生会分析^p和判断一个多项式是否为完全平方式,初步掌握运用完全平方式把多项式分解因式的方法;2。理解完全平方式的意义和特点,培养学生的判断才能。3.进一步培养学生全面地观察问题、分析^p问题和逆向思维的才能.4.通过运用公式法分解因式的教学,使学生进一步体会“把一个代数式看作一个字母”的换元思想。教学重点和难点重点:运用完全平方式分解因式。难点:灵敏运用完全平方公式公解因式。教学过程设计一、复习1。问:什么叫把一个多项式因式分解?我们已经学习了哪些因式分解的方法?答:把一个多项式化成几个整式乘积形式,叫做把这个多项式因式分解。我们学过的因式分解的方法有提取公因式法及运用平方差公式法。2。把以下各式分解因式:(1)ax4-ax2(2)16m4-n4。解(1)ax4-ax2=ax2(x2-1)=ax2(x+1)(x-1)(2)16m4-n4=(4m2)2-(n2)2=(4m2+n2)(4m2-n2)=(4m2+n2)(2m+n)(2m-n)。问:我们学过的乘法公式除了平方差公式之外,还有哪些公式?答:有完全平方公式。请写出完全平方公式。完全平方公式是:(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2。这节课我们就来讨论如何运用完全平方公式把多项式因式分解。二、新课和讨论运用平方差公式把多项式因式分解的思路一样,把完全平方公式反过来,就得到a2+2ab+b2=(a+b)2;a2-2ab+b2=(a-b)2。这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。式子a2+2ab+b2及a2-2ab+b2叫做完全平方式,上面的两个公式就是完全平方公式。运用这两个式子,可以把形式是完全平方式的多项式分解因式。问:具备什么特征的多项是完全平方式?答:一个多项式假如是由三局部组成,其中的两局部是两个式子(或数)的平方,并且这两局部的符号都是正号,第三局部是上面两个式子(或数)的乘积的二倍,符号可正可负,像这样的式子就是完全平方式。问:以下多项式是否为完全平方式?为什么?(1)x2+6x+9;(2)x2+xy+y2;(3)25x4-10x2+1;(4)16a2+1。答:(1)式是完全平方式。因为x2与9分别是x的平方与3的平方,6x=2·x·3,所以x2+6x+9=(x+3)。(2)不是完全平方式。因为第三局部必须是2xy。(3)是完全平方式。25x=(5x),1=1,10x=2·5x·1,所以25x-10x+1=(5x-1)。(4)不是完全平方式。因为缺第三局部。请同学们用箭头表示完全平方公式中的a,b与多项式9x2+6xy+y2中的对应项,其中a=?b=?2ab=?答:完全平方公式为:其中a=3x,b=y,2ab=2·(3x)·y。例1把25x4+10x2+1分解因式。分析^p:这个多项式是由三局部组成,第一项“25x4”是(5x2)的平方,第三项“1”是1的平方,第二项“10x2”是5x2与1的积的2倍。所以多项式25x4+10x2+1是完全平方式,可以运用完全平方公式分解因式。解25x4+10x2+1=(5x2)2+2·5x2·1+12=(5x2+1)2。例2把1-m+分解因式。问:请同学分析^p这个多项式的特点,是否可以用完全平方公式分解因式?有几种解法?答:这个多项式由三局部组成,第一项“1”是1的平方,第三项“”是的平方,第二项“-m”是1与m/4的积的2倍的相反数,因此这个多项式是完全平方式,可以用完全平方公式分解因式。解法11-m+=1-2·1·+〔〕2=〔1-〕2。解法2先提出,那么1-m+=(16-8m+m2)=(42-2·4·m+m2)=(4-m)2。三、课堂练习(投影)1。填空:(1)x2-10x+〔〕2=〔〕2;(2)9x2+〔〕+4y2=〔〕2;(3)1-〔〕+m2/9=〔〕2。2。以下各多项式是不是完全平方式?假如是,可以分解成什么式子?假如不是,请把多项式改变为完全平方式。(1)x2-2x+4;(2)9x2+4x+1;(3)a2-4ab+4b2;(4)9m2+12m+4;(5)1-a+a2/4。3。把以下各式分解因式:(1)a2-24a+144;(2)4a2b2+4ab+1;(3)19x2+2xy+9y2;(4)14a2-ab+b2。答案:1。(1)25,(x-5)2;(2)12xy,(3x+2y)2;(3)2m/3,〔1-m3〕2。2。(1)不是完全平方式,假如把第二项的“-2x”改为“-4x”,原式就变为x2-4x+4,它是完全平方式;或把第三项的“4”改为1,原式就变为x2-2x+1,它是完全平方式。(2)不是完全平方式,假如把第二项“4x”改为“6x”,原式变为9x2+6x+1,它是完全平方式。(3)是完全平方式,a2-4ab+4b2=(a-2b)2。(4)是完全平方式,9m2+12m+4=(3m+2)2。(5)是完全平方式,1-a+a2/4=〔1-a2〕2。3。(1)(a-12)2;(2)(2ab+1)2;(3)(13x+3y)2;(4)〔12a-b〕2。四、小结运用完全平方公式把一个多项式分解因式的主要思路与方法是:1。首先要观察、分析^p和判断所给出的多项式是否为一个完全平方式,假如这个多项式是一个完全平方式,再运用

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论