福建省厦冂双十中学2023年数学高一下期末质量检测试题含解析_第1页
福建省厦冂双十中学2023年数学高一下期末质量检测试题含解析_第2页
福建省厦冂双十中学2023年数学高一下期末质量检测试题含解析_第3页
福建省厦冂双十中学2023年数学高一下期末质量检测试题含解析_第4页
福建省厦冂双十中学2023年数学高一下期末质量检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知数列、、、、,可猜想此数列的通项公式是().A. B.C. D.2.为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是()A.简单随机抽样 B.按性别分层抽样C.按学段分层抽样 D.系统抽样3.若某程序框图如图所示,则该程序运行后输出的值是()A.3 B.4 C.5 D.64.某厂家生产甲、乙、丙三种不同类型的饮品・产量之比为2:3:4.为检验该厂家产品质量,用分层抽样的方法抽取一个容量为72的样本,则样本中乙类型饮品的数量为A.16 B.24 C.32 D.485.已知圆(为圆心,且在第一象限)经过,,且为直角三角形,则圆的方程为()A. B.C. D.6.如图,飞机的航线和山顶在同一个铅垂面内,若飞机的高度为海拔18km,速度为1000m/h,飞行员先看到山顶的俯角为,经过1min后又看到山顶的俯角为,则山顶的海拔高度为(精确到0.1km,参考数据:)A.11.4km B.6.6km C.6.5km D.5.6km7.在中,已知角的对边分别为,若,,,,且,则的最小角的正切值为()A. B. C. D.8.的内角、、所对的边分别为、、,下列命题:(1)三边、、既成等差数列,又成等比数列,则是等边三角形;(2)若,则是等腰三角形;(3)若,则;(4)若,则;(5),,若唯一确定,则.其中,正确命题是()A.(1)(3)(4) B.(1)(2)(3) C.(1)(2)(5) D.(3)(4)(5)9.右边茎叶图记录了甲、乙两组各十名学生在高考前体检中的体重(单位:).记甲组数据的众数与中位数分别为,乙组数据的众数与中位数分别为,则()A. B.C. D.10.甲、乙两人约定晚6点到晚7点之间在某处见面,并约定甲若早到应等乙半小时,而乙还有其他安排,若他早到则不需等待,则甲、乙两人能见面的概率()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知过两点,的直线的倾斜角是,则______.12.已知x,y满足,则z=2x+y的最大值为_____.13.(理)已知函数,若对恒成立,则的取值范围为.14.在区间[-1,2]上随机取一个数x,则x∈[0,1]的概率为.15.已知,为锐角,且,则__________.16.函数的反函数的图象经过点,那么实数的值等于____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,,分别为内角,,的对边,且.(1)求角;(2)若,,求边上的高.18.在中,分别是所对的边,若的面积是,,.求的长.19.驻马店市政府委托市电视台进行“创建森林城市”知识问答活动,市电视台随机对该市15~65岁的人群抽取了n人,绘制出如图1所示的频率分布直方图,回答问题的统计结果如表2所示.(1)分别求出a,b,x,y的值;(2)从第二、三、四、五组回答正确的人中用分层抽样的方法抽取7人,则从第二、三、四、五组每组回答正确的人中应各抽取多少人?(3)在(2)的条件下,电视台决定在所抽取的7人中随机选2人颁发幸运奖,求所抽取的人中第二组至少有1人获得幸运奖的概率.20.设公差不为0的等差数列中,,且构成等比数列.(Ⅰ)求数列的通项公式;(Ⅱ)若数列的前项和满足:,求数列的前项和.21.如图,四边形是边长为2的正方形,为的中点,以为折痕把折起,使点到达点的位置,且.(1)求证:平面平面;(2)求二面角的余弦值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

利用赋值法逐项排除可得出结果.【详解】对于A选项,,不合乎题意;对于B选项,,不合乎题意;对于C选项,,不合乎题意;对于D选项,当为奇数时,,此时,当为偶数时,,此时,合乎题意.故选:D.【点睛】本题考查利用观察法求数列的通项,考查推理能力,属于中等题.2、C【解析】试题分析:符合分层抽样法的定义,故选C.考点:分层抽样.3、C【解析】

根据程序框图依次计算得到答案.【详解】根据程序框图依次计算得到结束故答案为C【点睛】本题考查了程序框图,意在考查学生对于程序框图的理解能力和计算能力.4、B【解析】

根据分层抽样各层在总体的比例与在样本的比例相同求解.【详解】因为分层抽样总体和各层的抽样比例相同,所以各层在总体的比例与在样本的比例相同,所以样本中乙类型饮品的数量为.故选B.【点睛】本题考查分层抽样,依据分层抽样总体和各层的抽样比例相同.5、D【解析】

设且,半径为,根据题意列出方程组,求得的值,即可求解.【详解】依题意,圆经过点,可设且,半径为,则,解得,所以圆的方程为.【点睛】本题主要考查了圆的标准方程的求解,其中解答中熟记圆的标准方程的形式,以及合理应用圆的性质是解答的关键,着重考查了运算与求解能力,属于基础题.6、C【解析】

根据题意求得和的长,然后利用正弦定理求得BC,最后利用求得问题答案.【详解】在中,根据正弦定理,所以:山顶的海拔高度为18-11.5=6.5km.故选:C【点睛】本题考查了正弦定理在实际问题中的应用,考查了学生数学应用,转化与划归,数学运算的能力,属于中档题.7、D【解析】

根据大角对大边判断最小角为,利用正弦定理得到,代入余弦定理计算得到,最后得到.【详解】根据大角对大边判断最小角为根据正弦定理知:根据余弦定理:化简得:故答案选D【点睛】本题考查了正弦定理,余弦定理,意在考查学生的计算能力.8、A【解析】

由等差数列和等比数列中项性质可判断(1);由正弦定理和二倍角公式、诱导公式,可判断(2);由三角形的边角关系和余弦函数的单调性可判断(3);由余弦定理和基本不等式可判断(4);由正弦定理和三角形的边角关系可判断(5).【详解】解:若、、既成等差数列,又成等比数列,则,,则,得,得,得,则是等边三角形,故(1)正确;若,则,则,则或,即或,则△ABC是等腰或直角三角形,故(2)错误;若,则,则,故(3)正确;若,则,则,由得,则,则,故(4)正确;若,,则,即,又,若唯一确定,则或,则或,故(5)错误;故选:A.【点睛】本题主要考查正弦定理和余弦定理的运用,以及三角形的形状的判断,考查化简运算能力,属于中档题.9、D【解析】甲组数据的众数为x1=64,乙组数据的众数为x2=66,则x1<x2;甲组数据的中位数为y1==65,乙组数据的中位数为y2==66.5,则y1<y2.10、A【解析】设甲到达时刻为,乙到达时刻为,依题意列不等式组为,画出可行域如下图阴影部分,故概率为.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

由两点求斜率公式及斜率等于倾斜角的正切值列式求解.【详解】解:由已知可得:,即,则.故答案为.【点睛】本题考查直线的斜率,考查直线倾斜角与斜率的关系,是基础题.12、1.【解析】

先根据约束条件画出可行域,再利用几何意义求最值,表示直线在轴上的截距,只需求出可行域直线在轴上的截距最大值即可.【详解】解:,在坐标系中画出图象,三条线的交点分别是,,,在中满足的最大值是点,代入得最大值等于1.故答案为:1.【点睛】本题是考查线性规划问题,本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.13、【解析】试题分析:函数要使对恒成立,只要小于或等于的最小值即可,的最小值是0,即只需满足,解得.考点:恒成立问题.14、【解析】

直接利用长度型几何概型求解即可.【详解】因为区间总长度为,符合条件的区间长度为,所以,由几何概型概率公式可得,在区间[-1,2]上随机取一个数x,则x∈[0,1]的概率为,故答案为:.【点睛】解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与长度有关的几何概型问题关鍵是计算问题的总长度以及事件的长度.15、【解析】

由题意求得,再利用两角和的正切公式求得的值,可得的值.【详解】,为锐角,且,即,.再结合,则,故答案为.【点睛】本题主要考查两角和的正切公式的应用,属于基础题.16、【解析】

根据原函数与其反函数的图象关于直线对称,可得函数的图象经过点,由此列等式可得结果.【详解】因为函数的反函数的图象经过点,所以函数的图象经过点,所以,即,解得.故答案为:【点睛】本题考查了原函数与其反函数的图象的对称性,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】

(1)利用正弦定理化简已知条件,利用三角形内角和定理以及两角和的正弦公式化简,由此求得,进而求得的大小.(2)利用正弦定理求得,进而求得的大小,由此求得的值,根据求得边上的高.【详解】解:(1)∵∴∴∴∴即:,∴(2)由正弦定理:,∴∵∴∴∴设边上的高为,则有【点睛】本小题主要考查利用正弦定理进行边角互化,考查利用正弦定理解三角形,考查三角恒等变换,考查特殊角的三角函数值,属于中档题.18、8【解析】

利用同角三角函数的基本关系式求得,利用三角形的面积公式列方程求得,结合求得,根据余弦定理求得的长.【详解】由()得.因为的面积是,则,所以由解得.由余弦定理得,即的长是.【点睛】本小题主要考查同角三角函数的基本关系式,考查三角形的面积公式,考查余弦定理解三角形.19、(1)0.9,0.36,270,90;(2)2人,3人,1人,1人;(3)1121【解析】

(1)先计算出总人数为1000人,再根据公式依次计算a,b,x,y的值.(2)根据分层抽样规律得到从第二、三、四、五组每组回答正确的人中应分别抽取:2人,3人,1人,1人(3)排出所有可能和满足条件的情况,得到概率.【详解】(1)依题和图表:由0.010×10×n=500.5得:由0.020×10×n=180a得:由0.030×10×n=x0.9得:由0.025×10×n=90b得:由0.015×10×n=y0.6得:故所求a=0.9,b=0.36,x=270,y=90.(2)由以上知:第二、三、四、五组回答正确的人数分别为:180人,270人,90人,90人用分层抽样抽取7人,则:从第二组回答正确的人中应该抽取:7×180从第三组回答正确的人中应该抽取:7×270从第四组回答正确的人中应该抽取:7×90从第五组回答正确的人中应该抽取:7×90故从第二、三、四、五组每组回答正确的人中应分别抽取:2人,3人,1人,1人;(3)设从第二组回答正确的人抽取的2人为:2a,2b,从第三组回答正确的人抽取的3人为:3a,3b,3c从第四组回答正确的人抽取的1人为:4a从第五组回答正确的人抽取的1人为:5a随机抽取2人,所有可能的结果有:(2a,2b),(2a,3a),(2a,3b),(2a,3c),(2a,4a),(2a,5a),(2b,3a),(2b,3b),(2b,3c),(2b,4a),(2b,5a),(3a,3b),(3a,3c),(3a,4a),(3a,5a),(3b,3c),(3b,4a),(3b,5a),(3c,4a),(3c,5a),(4a,5a),共21个基本事件,其中第二组至少有1人被抽中的有:(2a,2b),(2a,3a),(2a,3b),(2a,3c),(2a,4a),(2a,5a),(2b,3a),(2b,3b),(2b,3c),(2b,4a),(2b,5a)共这11个基本事件.故抽取的人中第二组至少有1人获得幸运奖的概率为:1121【点睛】本题考查了频率直方图,分层抽样,概率的计算,意在考查学生的应用能力和计算能力.20、(Ⅰ)(Ⅱ)【解析】

(Ⅰ)根据条件列方程解得公差,再根据等差数列通项公式得结果,(Ⅱ)先根据和项求通项,再根据错位相减法求和.【详解】(Ⅰ)因为构成等比数列,所以(0舍去)所以(Ⅱ)当时,当时,,相减得所以即【点睛】本题考查等差数列通项公式以及错位相减法求和,考查基本分析求解能力,属中档题.21、(1)见解析;(2)【解析】

(1)先由线面垂直的判定定理得到平面,进而可得平面平面;(2)先取中点,连结,,证明平面平面,在平面内作于点,则平面.以点为原点,为轴,为轴,如图建立空间直角坐标系.分别求出两平面的法向量,求向量夹角余弦值,即可求出结果

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论